Initial Commit and Notes from HS24
BIN
hs24/lineare_algebra/.DS_Store
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
\chapter{Ausgleichsrechnung}
|
||||
|
||||
\input{ausgleichsrechnung_least_squares.tex}
|
||||
\input{normalengleichung.tex}
|
||||
\input{qrzerlegung.tex}
|
||||
|
||||
\nt{
|
||||
Nützliche Videos:
|
||||
|
||||
\begin{itemize}
|
||||
\item Least squares approximation $|$ Linear Algebra $|$ Khan Academy (\url{https://www.youtube.com/watch?v=MC7l96tW8V8})
|
||||
\item A=QR Factorizations: Part 4/5 Least Squares (\url{https://www.youtube.com/watch?v=B3_vu5WcBzg})
|
||||
\end{itemize}
|
||||
}
|
||||
|
||||
|
||||
\newpage
|
@@ -0,0 +1,36 @@
|
||||
\section{Ausgleichsrechnung ("Least Sqares")}
|
||||
|
||||
Nehmen wir an, dass wir eine Datenbank haben mit Messungen, welches wir in einem Graphen eingefügt haben. Nun wollen wir eine Funktion finden, welches durch die Messwerte geht. Wir können das folgende Gleichungssystem bilden:
|
||||
|
||||
\begin{equation}
|
||||
\mathbf{A} \vec{x} = \vec{b}
|
||||
\label{eq:least square prev}
|
||||
\end{equation}
|
||||
|
||||
Wobei die Matrix $\mathbf{A}$ die parameter von $\vec{x}$ sind und $\vec{b}$ die resultierende Gerade bildet.
|
||||
|
||||
Wir schauen uns nun die folgende Grafik an:
|
||||
|
||||
\includegraphics[width=\textwidth]{fig/Fig_3.png}
|
||||
|
||||
Wie man anhand der Grafik sehen kann, sieht man, dass es $\vec{x}$ nicht existiert, da es keine Funktion existiert, welche durch alle Punkte geht. Was ist, wenn man trotz allem eine Funktion finden möchte?
|
||||
\\
|
||||
Wir nehmen eine neue Betrachtungsweise. Nehmen wir an, dass die Matrix $\mathbf{A}$ eine Ebene bildet. Die Gleichung $\mathbf{A} \vec{x} = \vec{b}$ bildet dann einen Vector $\vec{b}$ welches in der Ebene ist, die von $\mathbf{A}$ gebildet wird. Nehmen wir an, dass $\vec{b}$ nicht in der Ebene ist. Daraus folgt, dass es kein $\vec{x}$ gibt, welches die Gleichung bildet. Was kann man stattdessen machen?
|
||||
\\
|
||||
\\
|
||||
Man könnte ein $\vec{\hat{x}}$ wählen, welche die Gleichung zwar nicht bildet aber den Vektor $\vec{b}$ annähert. Daraus schliesst man, dass $\vec{\hat{x}}$ $\vec{b}$ am ehesten annähert, wenn die Distanz von $b'$, welches den $\vec{b'}$ in der Ebene bildet und $b$ am geringsten ist.
|
||||
|
||||
\includegraphics[width=\textwidth]{fig/Fig_4.png}
|
||||
|
||||
Anahand der Figur kann man erkennen, dass $\vec{\hat{x}}$ so gewählt werden sollte, dass es die Projektion von $\vec{b}$ bildet. Daraus kann man die folgende Definition ableiten.
|
||||
|
||||
\dfn{Lineare Ausgleichsrechnung als lineares Gleichungssystem \cite{Gradinaru2024}}{
|
||||
Sei eine $m \times n$ Matrix $\mathbf{A}$ und der Vektor $\vec{b}$ mit $m$ Einträgen. Gesucht ist ein $\hat{x}$, so dass
|
||||
|
||||
\[
|
||||
||\mathbf{A}\vec{\hat{x}} - \vec{b}|| = \text{min} ||\mathbf{A}\vec{x} - \vec{b}||
|
||||
.\]
|
||||
|
||||
}
|
||||
|
||||
Es gibt zwei wege um $\vec{\hat{x}}$ zu berechnen, nähmlich die Lösung mit der Normalengleichung und Lösung mit der QR-Zerlegung.
|
@@ -0,0 +1,21 @@
|
||||
\section{Lösung mit der Normalengleichung}
|
||||
|
||||
\dfn{Normalengleichung \cite{Gradinaru2024}}{
|
||||
Die Gleichung
|
||||
|
||||
\[
|
||||
\mathbf{A} ^{\text{T}} \mathbf{A} \vec{x} = \vec{b} \mathbf{A} ^{\text{T}}
|
||||
\]
|
||||
|
||||
heisst Normalengleichung.
|
||||
}
|
||||
|
||||
Mit dieser Funktion kann man ein $\vec{\hat{x}}$ finden, welche den Vektor $\vec{b}$ annähert. Dabei wird wie folgt vorgegangen:
|
||||
|
||||
\begin{enumerate}
|
||||
\item Man multipliziert die Matrix $\mathbf{A}$ mit ihrem Transponierten
|
||||
\item Man multipliziert den Vector $\vec{b}$ mit $\mathbf{A} ^{\text{T}}$.
|
||||
\item Man gausst die Matrix $\mathbf{A}$ um nach den Parametern von $\vec{x}$ aufzulösen
|
||||
\end{enumerate}
|
||||
|
||||
Wie man sieht, ist der Nachteil dieser Methode, dass man die Matrix $\mathbf{A}$ gaussen muss. Es gibt aber eine zweite Methode um $\vec{\hat{x}}$ herauszufinden.
|
15
hs24/lineare_algebra/ausgleichsrechnung/qrzerlegung.tex
Normal file
@@ -0,0 +1,15 @@
|
||||
\section{Lösung mit der QR-Zerlegung}
|
||||
|
||||
Eine einfachere Methode $\vec{\hat{x}}$ zu finden ist mit Hilfe der QR-Zerlegung.
|
||||
|
||||
\dfn{Lösung mit der QR-Zerlegung}{
|
||||
Sei die QR-Zerlegung einer $m \times n$ Matrix $\mathbf{A}$ gegeben, so ist $\vec{\hat{x}}$ durch
|
||||
|
||||
\[
|
||||
\mathbf{R} \vec{x} = \mathbf{Q} ^{\text{T}} \vec{b}
|
||||
\]
|
||||
|
||||
definiert.
|
||||
}
|
||||
|
||||
Dabei geht man wie bei der Normalengleichung vor, jedoch fällt das Gaussen weg, da $\mathbf{R}$ eine obere Dreiecksmatrix ist.
|
15
hs24/lineare_algebra/determinante/anwendungen.tex
Normal file
@@ -0,0 +1,15 @@
|
||||
\section{Anwendungen}
|
||||
|
||||
Wie vorher erwähnt, wird die Determinante als ein Werkzeug für lineare Transformationen verwendet. Was wir bereits auch angeschaut haben anhand von Beispielen ist, dass det die Fläche ist welche eine $2 \times 2$ Matrix aufspannt.
|
||||
\\
|
||||
Für eine $3 \times 3$ Matrix, ist det das Volumen des Körpers, welches von den Vektoren der Matrix gebildet wird.
|
||||
\\
|
||||
Neben dem hat det eine Relevanz mit dem Kreuzprodukt:
|
||||
|
||||
\[
|
||||
|(\mathbf{u} \times \mathbf{v}) \mathbf{w}| = |\text{det} \begin{bmatrix}
|
||||
u_1 & u_2 & u_3\\
|
||||
v_1 & v_2 & v_3\\
|
||||
w_1 & w_2 & w_3\\
|
||||
\end{bmatrix}|
|
||||
.\]
|
110
hs24/lineare_algebra/determinante/definition_eigenschaften.tex
Normal file
@@ -0,0 +1,110 @@
|
||||
\section{Definition und Eigenschaften}
|
||||
|
||||
\dfn{Determinante \cite{Gradinaru2024}}{
|
||||
Die Determinante ist eine Funktion
|
||||
|
||||
\[
|
||||
\text{det : } \underbrace{\mathbb{R} ^{n} \times \mathbb{R} ^{n} \times ... \times \mathbb{R} ^{n}}_{n} \rightarrow \mathbb{R}
|
||||
\]
|
||||
|
||||
mit folgenden Eigenschaften:
|
||||
|
||||
\begin{itemize}
|
||||
\item[D1] $\text{det } \mathbf{I}_n = 1$
|
||||
\item[D2] det wechselt das Vorzeichen, wenn zwei Zeilen oder Spalten vertauscht werden (Antisymmetrie).
|
||||
\item[D3] det ist linear in jeder Zeile und Spalte:
|
||||
|
||||
\[
|
||||
\text{det} \begin{bmatrix}
|
||||
ta & tb\\
|
||||
c & d\\
|
||||
\end{bmatrix} = t \cdot \text{det} \begin{bmatrix}
|
||||
a & b\\
|
||||
c & d\\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
\[
|
||||
\text{det} \begin{bmatrix}
|
||||
a + \tilde{a} & b + \tilde{b}\\
|
||||
c & d\\
|
||||
\end{bmatrix} = \text{det} \begin{bmatrix}
|
||||
a & b\\
|
||||
c & d\\
|
||||
\end{bmatrix} + \text{det} \begin{bmatrix}
|
||||
\tilde{a} & \tilde{b}\\
|
||||
c & d\\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
\end{itemize}
|
||||
}
|
||||
|
||||
Was ist genau die Determinante und was ist der Konzept dahinter?
|
||||
\\
|
||||
\\
|
||||
Die Determinante ist ein Hilfsmittel um eine lineare Transformation besser verstehen zu können, genauer um welchen Faktor die Fläche sich vergrössert. Betrachten wir es anhand einer Grafik.
|
||||
\\
|
||||
Wir wissen von D1, dass $\text{det } \mathbf{I}_2 = 1$. Versuchen wir mal dies in einer Grafik darzustellen.
|
||||
|
||||
\includegraphics[width=\textwidth]{fig/Fig_5.png}
|
||||
|
||||
$\mathbf{I}_2$ bildet im Koordinatensystem eine Fläche mit einer Grösse von 1. Wir nehmen nun einfachtshalber mal eine willkürliche Dreiecksmatrix $\mathbf{A}$. Diese Zeichnen wir auch in das Koordinatensystem ein.
|
||||
|
||||
\includegraphics[width=\textwidth]{fig/Fig_6.png}
|
||||
|
||||
Wir sehen, dass die Matrix $\mathbf{A}$ eine Fläche aufspannt mit Grösse 6. Somit ist det 6. Wir nehemen nun eine andere Matrix $\mathbf{B}$.
|
||||
|
||||
\includegraphics[width=\textwidth]{fig/Fig_7.png}
|
||||
|
||||
Wir sehen, dass die Matrix eine lineare Transformation ist, jedoch bleibt die Fläche gleich gross da det 1 ist. Somit würden die Flächen ihre Grösse nach der Transformation nicht verändern.
|
||||
\\
|
||||
Was ist mit negativen det. Gibt es negative det und wie soll man sich negative det sich vorstellen?
|
||||
\\
|
||||
Wir betrachten neben der $\mathbf{I}_2$ die Matrix $\mathbf{C}$.
|
||||
|
||||
\includegraphics[width=\textwidth]{fig/Fig_8.png}
|
||||
|
||||
Wir sehen, dass die Fläche, welche die Matrix $\mathbf{C}$ bildet in vergleich zu Matrix $\mathbf{B}$ gespiegelt ist. Daraus kann man ziehen, dass negative det eine Skalierung und eine Spiegelung sind.
|
||||
\\
|
||||
Wie sieht es aus mit det die 0 sind?
|
||||
\\
|
||||
Betrachten wir die Matrix $\mathbf{D}$.
|
||||
|
||||
\includegraphics[width=\textwidth]{fig/Fig_9.png}
|
||||
|
||||
Die Matrix $\mathbf{D}$ hat keine Fläche, da die Vektoren, welche die Fläche bilden übereinander sind. In manchen Fällen können Determinanten auch ein Punkt bilden.
|
||||
\\
|
||||
\\
|
||||
Da wir das Konzept von Determinanten jetzt besser verstehen. Können wir mit ein paar wichtige Rechenregel für Determinanten fortfahren. Die Rechenregel sind ausführlich im Skript von Dr. Gradinaru \cite{Gradinaru2024} beschrieben.
|
||||
\\
|
||||
\begin{itemize}
|
||||
\item Falls zwei Spalten oder Zeilen einer Matrix identisch sind, so ist die Determinante der Matrix 0.
|
||||
\item Lineare Kombinationen von Zeilen der Matrix ändert die Determinante dieser Matrix nicht.
|
||||
\item Wenn eine Matrix eine Nullzeile oder eine Nullspalte hat, so ist ihre Determinante 0.
|
||||
\item Falls $\mathbf{A}$ eine Dreiecksmatrix ist, so ist die Determinante von A das Produkt der Diagonaleinträge.
|
||||
\item Falls A singulär ist, entsteht bei der Gauss-Elimination eine Nullzeile und die Determinante ist 0.
|
||||
\item det $\mathbf{A} \mathbf{B}$ = det $\mathbf{A} \cdot$ det $\mathbf{B}$.
|
||||
\item \[
|
||||
\text{det } \mathbf{A} ^{-1} = \frac{1}{\text{det } \mathbf{A}}
|
||||
.\]
|
||||
\item $\text{det } \mathbf{A} = a_{11} \cdot \text{det } \mathbf{A} _{11} - a_{12} \cdot \text{det } \mathbf{A} _{12} + ... + a_{1n} \cdot det \mathbf{A}_{1n}$
|
||||
\end{itemize}
|
||||
|
||||
\nt{
|
||||
Es gibt noch ein paar Tricks um det zu berechnen:
|
||||
|
||||
\begin{itemize}
|
||||
\item det einer $3 \times 3$ Matrix lässt sich auch so rechnen:
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\textwidth]{fig/Fig_10.png}
|
||||
\end{center}
|
||||
|
||||
\item Die Regel mit der Dreiecksmatrix lässt sich ein wenig erweitern. Falls man Blöcke bilden kann so lässt sich det durch das Multiplizieren der einzelnen det der Blöcke berechnen.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.3\textwidth]{fig/Fig_11.png}
|
||||
\end{center}
|
||||
\end{itemize}
|
||||
}
|
15
hs24/lineare_algebra/determinante/determinante.tex
Normal file
@@ -0,0 +1,15 @@
|
||||
\chapter{Determinante}
|
||||
|
||||
\input{definition_eigenschaften.tex}
|
||||
\input{anwendungen.tex}
|
||||
|
||||
\nt{
|
||||
Nützliche Videos:
|
||||
|
||||
\begin{itemize}
|
||||
\item The determinant $|$ Chapter 6, Essence of linear algebra \url{https://www.youtube.com/watch?v=Ip3X9LOh2dk}
|
||||
\end{itemize}
|
||||
}
|
||||
|
||||
|
||||
\newpage
|
12
hs24/lineare_algebra/disclaimer.tex
Normal file
@@ -0,0 +1,12 @@
|
||||
\section*{DISCLAIMER}
|
||||
|
||||
Diese Notizen wurden verfasst auf Basis der Vorlesung Lineare Algebra (HS24) von V. Gradinaru und dem Skript "Lineare Algebra" von Vasile Gradinaru.
|
||||
\\
|
||||
\\
|
||||
Ich übernehme keine Haftung über mögliche Fehler in den Notizen (Es hat sicherlich ein paar drinnen, da ich teils Sätze umformuliert habe und meine Persönliche Notizen beigefügt habe!).
|
||||
\\
|
||||
\\
|
||||
Alle Grafiken wurden eigenhändig mit Manim \cite{MCD2024} generiert.
|
||||
\\
|
||||
\\
|
||||
Fehler können per Mail an \href{mailto:jirruh@ethz.ch}{jirruh@ethz.ch} gemeldet werden.
|
@@ -0,0 +1 @@
|
||||
\chapter{Eigenwertproblem}
|
BIN
hs24/lineare_algebra/fig/Fig_1.png
Normal file
After Width: | Height: | Size: 10 KiB |
BIN
hs24/lineare_algebra/fig/Fig_10.png
Normal file
After Width: | Height: | Size: 39 KiB |
BIN
hs24/lineare_algebra/fig/Fig_11.png
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
hs24/lineare_algebra/fig/Fig_2.png
Normal file
After Width: | Height: | Size: 7.2 KiB |
BIN
hs24/lineare_algebra/fig/Fig_3.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
hs24/lineare_algebra/fig/Fig_4.png
Normal file
After Width: | Height: | Size: 120 KiB |
BIN
hs24/lineare_algebra/fig/Fig_5.png
Normal file
After Width: | Height: | Size: 50 KiB |
BIN
hs24/lineare_algebra/fig/Fig_6.png
Normal file
After Width: | Height: | Size: 62 KiB |
BIN
hs24/lineare_algebra/fig/Fig_7.png
Normal file
After Width: | Height: | Size: 52 KiB |
BIN
hs24/lineare_algebra/fig/Fig_8.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
hs24/lineare_algebra/fig/Fig_9.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
hs24/lineare_algebra/graphs/__pycache__/graph.cpython-312.pyc
Normal file
391
hs24/lineare_algebra/graphs/graph.py
Normal file
@@ -0,0 +1,391 @@
|
||||
from manim import *
|
||||
|
||||
|
||||
class LSgraph1(Scene):
|
||||
def construct(self):
|
||||
# self.camera.background_color = "WHITE"
|
||||
ax = Axes(
|
||||
x_range=[-0.3, 10.3, 1],
|
||||
y_range=[-0.3, 5.3, 1],
|
||||
x_length=10.6,
|
||||
axis_config={
|
||||
"include_numbers": True,
|
||||
"color": BLACK,
|
||||
},
|
||||
)
|
||||
|
||||
self.camera.background_color = WHITE
|
||||
|
||||
axes_lables = ax.get_axis_labels().set_color(BLACK)
|
||||
|
||||
dot1 = Dot(point=ax.c2p(2, 1.3, 0), color=BLUE)
|
||||
dot2 = Dot(point=ax.c2p(3, 1.6, 0), color=BLUE)
|
||||
dot3 = Dot(point=ax.c2p(5, 2.0, 0), color=BLUE)
|
||||
dot4 = Dot(point=ax.c2p(8, 4.7, 0), color=BLUE)
|
||||
dot5 = Dot(point=ax.c2p(10, 4.2, 0), color=BLUE)
|
||||
|
||||
function_graph = ax.plot(lambda x: 0.5 * x, color=BLACK)
|
||||
|
||||
plot = VGroup(ax, axes_lables, dot1, dot2, dot3, dot4, dot5, function_graph)
|
||||
self.add(plot)
|
||||
|
||||
|
||||
class LSgraph2(ThreeDScene):
|
||||
def construct(self):
|
||||
# self.camera.background_color = "WHITE"
|
||||
ax = ThreeDAxes(
|
||||
x_range=[-0.3, 10.3, 1],
|
||||
y_range=[-0.3, 10.3, 1],
|
||||
z_range=[-0.3, 10.3, 1],
|
||||
x_length=10.6,
|
||||
axis_config={
|
||||
"include_numbers": True,
|
||||
"color": BLACK,
|
||||
},
|
||||
)
|
||||
|
||||
self.camera.background_color = WHITE
|
||||
self.set_camera_orientation(
|
||||
phi=56 * DEGREES, theta=-30 * DEGREES, gamma=-7 * DEGREES, zoom=0.5
|
||||
)
|
||||
|
||||
axes_lables = ax.get_axis_labels().set_color(BLACK)
|
||||
|
||||
plane = Surface(
|
||||
lambda u, v: ax.c2p(u, v, u * 0),
|
||||
u_range=[2, 8],
|
||||
v_range=[2, 8],
|
||||
checkerboard_colors=[BLUE, BLUE],
|
||||
fill_opacity=0.75,
|
||||
stroke_width=0,
|
||||
)
|
||||
|
||||
vector = Arrow3D(ax.c2p(3, 3, 0), ax.c2p(6, 6, 3), color=RED)
|
||||
vector1 = Arrow3D(ax.c2p(3, 3, 0), ax.c2p(6, 6, 0), color=GREEN)
|
||||
|
||||
line = Line(ax.c2p(6, 6, 0), ax.c2p(6, 6, 3), color=ORANGE)
|
||||
|
||||
self.add(ax, axes_lables, vector, vector1, plane, line)
|
||||
|
||||
|
||||
class Detgraph1(Scene):
|
||||
def construct(self):
|
||||
ax = Axes(
|
||||
x_range=[-5.3, 5.3, 1],
|
||||
y_range=[-5.3, 5.3, 1],
|
||||
x_length=7,
|
||||
y_length=7,
|
||||
axis_config={
|
||||
"include_numbers": True,
|
||||
"color": BLACK,
|
||||
},
|
||||
)
|
||||
x = ax.get_x_axis()
|
||||
x.numbers.set_color(BLACK)
|
||||
y = ax.get_y_axis()
|
||||
y.numbers.set_color(BLACK)
|
||||
|
||||
self.camera.background_color = WHITE
|
||||
|
||||
axes_lables = ax.get_axis_labels().set_color(BLACK)
|
||||
|
||||
vec1 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(0, 1, 0), color=RED)
|
||||
vec2 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 0, 0), color=BLUE)
|
||||
|
||||
plane = Surface(
|
||||
lambda u, v: ax.c2p(u, v, u * 0),
|
||||
u_range=[0, 1],
|
||||
v_range=[0, 1],
|
||||
checkerboard_colors=[GREEN, GREEN],
|
||||
fill_opacity=0.75,
|
||||
stroke_width=0,
|
||||
)
|
||||
|
||||
text = MathTex(
|
||||
r"\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}", color=BLACK
|
||||
).move_to(ax.c2p(-2, 2, 0))
|
||||
|
||||
self.add(ax, axes_lables, vec1, vec2, plane, text)
|
||||
|
||||
|
||||
class Detgraph2(Scene):
|
||||
def construct(self):
|
||||
ax = Axes(
|
||||
x_range=[-5.3, 5.3, 1],
|
||||
y_range=[-5.3, 5.3, 1],
|
||||
x_length=7,
|
||||
y_length=7,
|
||||
axis_config={
|
||||
"include_numbers": True,
|
||||
"color": BLACK,
|
||||
},
|
||||
)
|
||||
x = ax.get_x_axis()
|
||||
x.numbers.set_color(BLACK)
|
||||
y = ax.get_y_axis()
|
||||
y.numbers.set_color(BLACK)
|
||||
self.camera.background_color = WHITE
|
||||
axes_lables = ax.get_axis_labels().set_color(BLACK)
|
||||
|
||||
vec1 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(0, 1, 0), color=RED)
|
||||
vec2 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 0, 0), color=BLUE)
|
||||
plane1 = Surface(
|
||||
lambda u, v: ax.c2p(u, v, u * 0),
|
||||
u_range=[0, 1],
|
||||
v_range=[0, 1],
|
||||
checkerboard_colors=[GREEN, GREEN],
|
||||
fill_opacity=0.75,
|
||||
stroke_width=0,
|
||||
)
|
||||
|
||||
vec3 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(0, 2, 0), color=PURPLE)
|
||||
vec4 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(3, 0, 0), color=PINK)
|
||||
plane2 = Surface(
|
||||
lambda u, v: ax.c2p(u, v, u * 0),
|
||||
u_range=[0, 3],
|
||||
v_range=[0, 2],
|
||||
checkerboard_colors=[YELLOW, YELLOW],
|
||||
fill_opacity=0.75,
|
||||
stroke_width=0,
|
||||
)
|
||||
|
||||
text = MathTex(
|
||||
r"\mathbf{A} \begin{bmatrix} 3 & 0\\ 0 & 2\end{bmatrix}", color=BLACK
|
||||
).move_to(ax.c2p(-2.5, 2, 0))
|
||||
|
||||
self.add(ax, axes_lables, plane2, plane1, vec4, vec3, vec2, vec1, text)
|
||||
|
||||
|
||||
class Detgraph3(Scene):
|
||||
def construct(self):
|
||||
ax = Axes(
|
||||
x_range=[-5.3, 5.3, 1],
|
||||
y_range=[-5.3, 5.3, 1],
|
||||
x_length=7,
|
||||
y_length=7,
|
||||
axis_config={
|
||||
"include_numbers": True,
|
||||
"color": BLACK,
|
||||
},
|
||||
)
|
||||
x = ax.get_x_axis()
|
||||
x.numbers.set_color(BLACK)
|
||||
y = ax.get_y_axis()
|
||||
y.numbers.set_color(BLACK)
|
||||
self.camera.background_color = WHITE
|
||||
axes_lables = ax.get_axis_labels().set_color(BLACK)
|
||||
|
||||
vec1 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(0, 1, 0), color=RED)
|
||||
vec2 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 0, 0), color=BLUE)
|
||||
plane1 = Surface(
|
||||
lambda u, v: ax.c2p(u, v, u * 0),
|
||||
u_range=[0, 1],
|
||||
v_range=[0, 1],
|
||||
checkerboard_colors=[GREEN, GREEN],
|
||||
fill_opacity=0.75,
|
||||
stroke_width=0,
|
||||
)
|
||||
|
||||
vec3 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 1, 0), color=PURPLE)
|
||||
vec4 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 0, 0), color=PINK)
|
||||
plane2 = Polygon(
|
||||
ax.c2p(0, 0, 0),
|
||||
ax.c2p(1, 0, 0),
|
||||
ax.c2p(2, 1, 0),
|
||||
ax.c2p(1, 1, 0),
|
||||
fill_color=YELLOW,
|
||||
fill_opacity=0.75,
|
||||
color=YELLOW,
|
||||
)
|
||||
|
||||
text = MathTex(
|
||||
r"\mathbf{B} \begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix}", color=BLACK
|
||||
).move_to(ax.c2p(-2.5, 2, 0))
|
||||
|
||||
self.add(ax, axes_lables, plane2, plane1, vec4, vec3, vec2, vec1, text)
|
||||
|
||||
|
||||
class Detgraph4(Scene):
|
||||
def construct(self):
|
||||
ax = Axes(
|
||||
x_range=[-5.3, 5.3, 1],
|
||||
y_range=[-5.3, 5.3, 1],
|
||||
x_length=7,
|
||||
y_length=7,
|
||||
axis_config={
|
||||
"include_numbers": True,
|
||||
"color": BLACK,
|
||||
},
|
||||
)
|
||||
x = ax.get_x_axis()
|
||||
x.numbers.set_color(BLACK)
|
||||
y = ax.get_y_axis()
|
||||
y.numbers.set_color(BLACK)
|
||||
self.camera.background_color = WHITE
|
||||
axes_lables = ax.get_axis_labels().set_color(BLACK)
|
||||
|
||||
vec1 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(0, 1, 0), color=RED)
|
||||
vec2 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 0, 0), color=BLUE)
|
||||
plane1 = Surface(
|
||||
lambda u, v: ax.c2p(u, v, u * 0),
|
||||
u_range=[0, 1],
|
||||
v_range=[0, 1],
|
||||
checkerboard_colors=[GREEN, GREEN],
|
||||
fill_opacity=0.75,
|
||||
stroke_width=0,
|
||||
)
|
||||
|
||||
vec3 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 1, 0), color=PURPLE)
|
||||
vec4 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(2, -1, 0), color=PINK)
|
||||
plane2 = Polygon(
|
||||
ax.c2p(0, 0, 0),
|
||||
ax.c2p(2, -1, 0),
|
||||
ax.c2p(3, 0, 0),
|
||||
ax.c2p(1, 1, 0),
|
||||
fill_color=YELLOW,
|
||||
fill_opacity=0.75,
|
||||
color=YELLOW,
|
||||
)
|
||||
|
||||
text = MathTex(
|
||||
r"\mathbf{C} \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}", color=BLACK
|
||||
).move_to(ax.c2p(-2.5, 2, 0))
|
||||
|
||||
self.add(ax, axes_lables, plane2, plane1, vec4, vec3, vec2, vec1, text)
|
||||
|
||||
|
||||
class Detgraph5(Scene):
|
||||
def construct(self):
|
||||
ax = Axes(
|
||||
x_range=[-5.3, 5.3, 1],
|
||||
y_range=[-5.3, 5.3, 1],
|
||||
x_length=7,
|
||||
y_length=7,
|
||||
axis_config={
|
||||
"include_numbers": True,
|
||||
"color": BLACK,
|
||||
},
|
||||
)
|
||||
x = ax.get_x_axis()
|
||||
x.numbers.set_color(BLACK)
|
||||
y = ax.get_y_axis()
|
||||
y.numbers.set_color(BLACK)
|
||||
self.camera.background_color = WHITE
|
||||
axes_lables = ax.get_axis_labels().set_color(BLACK)
|
||||
|
||||
vec1 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(0, 1, 0), color=RED)
|
||||
vec2 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(1, 0, 0), color=BLUE)
|
||||
plane1 = Surface(
|
||||
lambda u, v: ax.c2p(u, v, u * 0),
|
||||
u_range=[0, 1],
|
||||
v_range=[0, 1],
|
||||
checkerboard_colors=[GREEN, GREEN],
|
||||
fill_opacity=0.75,
|
||||
stroke_width=0,
|
||||
)
|
||||
|
||||
vec3 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(4, 2, 0), color=PURPLE)
|
||||
vec4 = Arrow3D(start=ax.c2p(0, 0, 0), end=ax.c2p(2, 1, 0), color=PINK)
|
||||
|
||||
text = MathTex(
|
||||
r"\mathbf{C} \begin{bmatrix} 4 & 2\\ 2 & 1\end{bmatrix}", color=BLACK
|
||||
).move_to(ax.c2p(-2.5, 2, 0))
|
||||
|
||||
self.add(ax, axes_lables, plane1, vec3, vec4, vec2, vec1, text)
|
||||
|
||||
|
||||
class Detgraph6(Scene):
|
||||
def construct(self):
|
||||
self.camera.background_color = WHITE
|
||||
|
||||
text1 = MathTex(
|
||||
r"\begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i\\ \end{bmatrix} \begin{matrix} a & b\\ d & e\\ g & h\\ \end{matrix}",
|
||||
color=BLACK,
|
||||
).scale(0.5)
|
||||
text2 = (
|
||||
MathTex(
|
||||
r"\Rightarrow a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b",
|
||||
color=BLACK,
|
||||
)
|
||||
.move_to([0, -1, 0])
|
||||
.scale(0.5)
|
||||
)
|
||||
|
||||
arrow1 = Arrow(
|
||||
[0, 0, 0],
|
||||
[1.2, -0.9, 0],
|
||||
max_tip_length_to_length_ratio=0.1,
|
||||
stroke_width=0.7,
|
||||
color=RED,
|
||||
).move_to([-0.4, -0.1, 0])
|
||||
arrow2 = Arrow(
|
||||
[0, 0, 0],
|
||||
[1.2, -0.9, 0],
|
||||
max_tip_length_to_length_ratio=0.1,
|
||||
stroke_width=0.7,
|
||||
color=RED,
|
||||
).move_to([0, -0.1, 0])
|
||||
arrow3 = Arrow(
|
||||
[0, 0, 0],
|
||||
[1.2, -0.9, 0],
|
||||
max_tip_length_to_length_ratio=0.1,
|
||||
stroke_width=0.7,
|
||||
color=RED,
|
||||
).move_to([0.4, -0.1, 0])
|
||||
|
||||
arrow4 = Arrow(
|
||||
[0, 0, 0],
|
||||
[1.2, 0.9, 0],
|
||||
max_tip_length_to_length_ratio=0.1,
|
||||
stroke_width=0.7,
|
||||
color=BLUE,
|
||||
).move_to([-0.3, -0.1, 0])
|
||||
arrow5 = Arrow(
|
||||
[0, 0, 0],
|
||||
[1.2, 0.9, 0],
|
||||
max_tip_length_to_length_ratio=0.1,
|
||||
stroke_width=0.7,
|
||||
color=BLUE,
|
||||
).move_to([0.1, -0.1, 0])
|
||||
arrow6 = Arrow(
|
||||
[0, 0, 0],
|
||||
[1.2, 0.9, 0],
|
||||
max_tip_length_to_length_ratio=0.1,
|
||||
stroke_width=0.7,
|
||||
color=BLUE,
|
||||
).move_to([0.5, -0.1, 0])
|
||||
|
||||
self.add(text1, text2, arrow1, arrow2, arrow3, arrow4, arrow5, arrow6)
|
||||
|
||||
|
||||
class Detgraph7(Scene):
|
||||
def construct(self):
|
||||
self.camera.background_color = WHITE
|
||||
|
||||
text1 = MathTex(
|
||||
r"\begin{bmatrix} a & b & 0 & 0\\ c & d & 0 & 0 \\ 0 & 0 & e & f \\ 0 & 0 & g & h \end{bmatrix}",
|
||||
color=BLACK,
|
||||
).scale(0.5)
|
||||
text2 = (
|
||||
MathTex(
|
||||
r"\Rightarrow \text{det } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \text{det } \begin{bmatrix} e & f \\ g & h \end{bmatrix}",
|
||||
color=BLACK,
|
||||
)
|
||||
.move_to([0, -1, 0])
|
||||
.scale(0.5)
|
||||
)
|
||||
|
||||
box1 = Polygon([0, 0, 0], [0.6, 0, 0], [0.6, 0.6, 0], [0, 0.6, 0]).move_to(
|
||||
[-0.36, 0.3, 0]
|
||||
)
|
||||
box2 = Polygon(
|
||||
[0, 0, 0], [0.6, 0, 0], [0.6, 0.6, 0], [0, 0.6, 0], color=RED
|
||||
).move_to([0.36, -0.3, 0])
|
||||
box3 = Polygon([0, 0, 0], [0.6, 0, 0], [0.6, 0.6, 0], [0, 0.6, 0]).move_to(
|
||||
[-0.3, -1, 0]
|
||||
)
|
||||
box4 = Polygon(
|
||||
[0, 0, 0], [0.6, 0, 0], [0.6, 0.6, 0], [0, 0.6, 0], color=RED
|
||||
).move_to([1.13, -1, 0])
|
||||
|
||||
self.add(text1, text2, box1, box2, box3, box4)
|
10
hs24/lineare_algebra/graphs/media/Tex/2b7ffb3c38a5a6e0.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-50' d='M1.265255-.767123L2.321295-1.793275C3.875467-3.16812 4.473225-3.706102 4.473225-4.702366C4.473225-5.838107 3.576588-6.635118 2.361146-6.635118C1.235367-6.635118 .498132-5.718555 .498132-4.83188C.498132-4.273973 .996264-4.273973 1.026152-4.273973C1.195517-4.273973 1.544209-4.393524 1.544209-4.801993C1.544209-5.061021 1.364882-5.32005 1.016189-5.32005C.936488-5.32005 .916563-5.32005 .886675-5.310087C1.115816-5.957659 1.653798-6.326276 2.231631-6.326276C3.138232-6.326276 3.566625-5.519303 3.566625-4.702366C3.566625-3.905355 3.068493-3.118306 2.520548-2.500623L.607721-.368618C.498132-.259029 .498132-.239103 .498132 0H4.194271L4.473225-1.733499H4.224159C4.174346-1.43462 4.104608-.996264 4.004981-.846824C3.935243-.767123 3.277709-.767123 3.058531-.767123H1.265255Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-50'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.1 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
2
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/31d3165490bf3404.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-52' d='M2.929016-1.643836V-.777086C2.929016-.418431 2.909091-.308842 2.171856-.308842H1.96264V0C2.371108-.029888 2.889166-.029888 3.307597-.029888S4.254047-.029888 4.662516 0V-.308842H4.4533C3.716065-.308842 3.696139-.418431 3.696139-.777086V-1.643836H4.692403V-1.952677H3.696139V-6.485679C3.696139-6.684932 3.696139-6.744707 3.536737-6.744707C3.447073-6.744707 3.417186-6.744707 3.337484-6.625156L.278954-1.952677V-1.643836H2.929016ZM2.988792-1.952677H.557908L2.988792-5.668742V-1.952677Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-52'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 879 B |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
4
|
||||
\end{align*}
|
||||
\end{document}
|
21
hs24/lineare_algebra/graphs/media/Tex/3247af9f4399a897.svg
Normal file
@@ -0,0 +1,21 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='40.7638pt' height='23.910579pt' viewBox='151.473646 -23.910576 40.7638 23.910579'>
|
||||
<defs>
|
||||
<path id='g1-48' d='M4.582814-3.188045C4.582814-3.985056 4.533001-4.782067 4.184309-5.519303C3.726027-6.475716 2.909091-6.635118 2.49066-6.635118C1.892902-6.635118 1.165629-6.37609 .757161-5.449564C.438356-4.762142 .388543-3.985056 .388543-3.188045C.388543-2.440847 .428394-1.544209 .836862-.787049C1.265255 .019925 1.992528 .219178 2.480697 .219178C3.01868 .219178 3.775841 .009963 4.214197-.936488C4.533001-1.62391 4.582814-2.400996 4.582814-3.188045ZM2.480697 0C2.092154 0 1.504359-.249066 1.325031-1.205479C1.215442-1.803238 1.215442-2.719801 1.215442-3.307597C1.215442-3.945205 1.215442-4.60274 1.295143-5.140722C1.484433-6.326276 2.231631-6.41594 2.480697-6.41594C2.809465-6.41594 3.466999-6.236613 3.656289-5.250311C3.755915-4.692403 3.755915-3.935243 3.755915-3.307597C3.755915-2.560399 3.755915-1.882939 3.646326-1.24533C3.496887-.298879 2.929016 0 2.480697 0Z'/>
|
||||
<path id='g1-50' d='M1.265255-.767123L2.321295-1.793275C3.875467-3.16812 4.473225-3.706102 4.473225-4.702366C4.473225-5.838107 3.576588-6.635118 2.361146-6.635118C1.235367-6.635118 .498132-5.718555 .498132-4.83188C.498132-4.273973 .996264-4.273973 1.026152-4.273973C1.195517-4.273973 1.544209-4.393524 1.544209-4.801993C1.544209-5.061021 1.364882-5.32005 1.016189-5.32005C.936488-5.32005 .916563-5.32005 .886675-5.310087C1.115816-5.957659 1.653798-6.326276 2.231631-6.326276C3.138232-6.326276 3.566625-5.519303 3.566625-4.702366C3.566625-3.905355 3.068493-3.118306 2.520548-2.500623L.607721-.368618C.498132-.259029 .498132-.239103 .498132 0H4.194271L4.473225-1.733499H4.224159C4.174346-1.43462 4.104608-.996264 4.004981-.846824C3.935243-.767123 3.277709-.767123 3.058531-.767123H1.265255Z'/>
|
||||
<path id='g1-51' d='M2.889166-3.506849C3.706102-3.775841 4.283935-4.473225 4.283935-5.260274C4.283935-6.07721 3.407223-6.635118 2.450809-6.635118C1.444583-6.635118 .687422-6.03736 .687422-5.280199C.687422-4.951432 .9066-4.762142 1.195517-4.762142C1.504359-4.762142 1.703611-4.98132 1.703611-5.270237C1.703611-5.768369 1.235367-5.768369 1.085928-5.768369C1.39477-6.256538 2.052304-6.386052 2.410959-6.386052C2.819427-6.386052 3.367372-6.166874 3.367372-5.270237C3.367372-5.150685 3.347447-4.572852 3.088418-4.134496C2.789539-3.656289 2.450809-3.626401 2.201743-3.616438C2.122042-3.606476 1.882939-3.58655 1.8132-3.58655C1.733499-3.576588 1.663761-3.566625 1.663761-3.466999C1.663761-3.35741 1.733499-3.35741 1.902864-3.35741H2.34122C3.158157-3.35741 3.526775-2.67995 3.526775-1.703611C3.526775-.348692 2.839352-.059776 2.400996-.059776C1.972603-.059776 1.225405-.229141 .876712-.816936C1.225405-.767123 1.534247-.986301 1.534247-1.364882C1.534247-1.723537 1.265255-1.92279 .976339-1.92279C.737235-1.92279 .418431-1.783313 .418431-1.344956C.418431-.438356 1.344956 .219178 2.430884 .219178C3.646326 .219178 4.552927-.687422 4.552927-1.703611C4.552927-2.520548 3.92528-3.297634 2.889166-3.506849Z'/>
|
||||
<path id='g2-20' d='M2.49066 23.501868H5.110834V22.953923H3.038605V.14944H5.110834V-.398506H2.49066V23.501868Z'/>
|
||||
<path id='g2-21' d='M2.211706 22.953923H.139477V23.501868H2.759651V-.398506H.139477V.14944H2.211706V22.953923Z'/>
|
||||
<path id='g0-65' d='M4.722291-6.694894C4.612702-6.953923 4.493151-6.953923 4.323786-6.953923C4.044832-6.953923 4.004981-6.874222 3.935243-6.694894L1.464508-.697385C1.404732-.547945 1.374844-.468244 .617684-.468244H.408468V0C.787049-.009963 1.265255-.029888 1.574097-.029888C1.96264-.029888 2.520548-.029888 2.889166 0V-.468244C2.86924-.468244 2.002491-.468244 2.002491-.597758C2.002491-.607721 2.032379-.707347 2.042341-.71731L2.540473-1.92279H5.210461L5.808219-.468244H4.861768V0C5.240349-.029888 6.1868-.029888 6.615193-.029888C7.013699-.029888 7.890411-.029888 8.239103 0V-.468244H7.272727L4.722291-6.694894ZM3.875467-5.160648L5.011208-2.391034H2.739726L3.875467-5.160648Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='151.473646' y='-9.46463' xlink:href='#g0-65'/>
|
||||
<use x='161.795964' y='-23.51208' xlink:href='#g2-20'/>
|
||||
<use x='167.054047' y='-15.541877' xlink:href='#g1-51'/>
|
||||
<use x='181.998023' y='-15.541877' xlink:href='#g1-48'/>
|
||||
<use x='167.054047' y='-3.586709' xlink:href='#g1-48'/>
|
||||
<use x='181.998023' y='-3.586709' xlink:href='#g1-50'/>
|
||||
<use x='186.979358' y='-23.51208' xlink:href='#g2-21'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 4.4 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\mathbf{A} \begin{bmatrix} 3 & 0\\ 0 & 2\end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/3ecdda5b14fcaacb.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='5.241955pt' height='6.22665pt' viewBox='169.234572 -7.876055 5.241955 6.22665'>
|
||||
<defs>
|
||||
<path id='g0-121' d='M4.841843-3.795766C4.881694-3.935243 4.881694-3.955168 4.881694-4.024907C4.881694-4.204234 4.742217-4.293898 4.592777-4.293898C4.493151-4.293898 4.333748-4.234122 4.244085-4.084682C4.224159-4.034869 4.144458-3.726027 4.104608-3.5467C4.034869-3.287671 3.965131-3.01868 3.905355-2.749689L3.457036-.956413C3.417186-.806974 2.988792-.109589 2.331258-.109589C1.823163-.109589 1.713574-.547945 1.713574-.916563C1.713574-1.374844 1.882939-1.992528 2.221669-2.86924C2.381071-3.277709 2.420922-3.387298 2.420922-3.58655C2.420922-4.034869 2.102117-4.403487 1.603985-4.403487C.657534-4.403487 .288917-2.958904 .288917-2.86924C.288917-2.769614 .388543-2.769614 .408468-2.769614C.508095-2.769614 .518057-2.789539 .56787-2.948941C.836862-3.88543 1.235367-4.184309 1.574097-4.184309C1.653798-4.184309 1.823163-4.184309 1.823163-3.865504C1.823163-3.616438 1.723537-3.35741 1.653798-3.16812C1.255293-2.11208 1.075965-1.544209 1.075965-1.075965C1.075965-.18929 1.703611 .109589 2.291407 .109589C2.67995 .109589 3.01868-.059776 3.297634-.33873C3.16812 .179328 3.048568 .667497 2.650062 1.195517C2.391034 1.534247 2.012453 1.823163 1.554172 1.823163C1.414695 1.823163 .966376 1.793275 .797011 1.404732C.956413 1.404732 1.085928 1.404732 1.225405 1.285181C1.325031 1.195517 1.424658 1.066002 1.424658 .876712C1.424658 .56787 1.155666 .52802 1.05604 .52802C.826899 .52802 .498132 .687422 .498132 1.175592C.498132 1.673724 .936488 2.042341 1.554172 2.042341C2.580324 2.042341 3.606476 1.135741 3.88543 .009963L4.841843-3.795766Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.234572' y='-3.586587' xlink:href='#g0-121'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.9 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
y
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/43b964ac29d1fef3.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='5.071286pt' height='4.289468pt' viewBox='169.3199 -7.876055 5.071286 4.289468'>
|
||||
<defs>
|
||||
<path id='g0-122' d='M1.325031-.826899C1.863014-1.404732 2.15193-1.653798 2.510585-1.96264C2.510585-1.972603 3.128269-2.500623 3.486924-2.859278C4.433375-3.785803 4.652553-4.26401 4.652553-4.303861C4.652553-4.403487 4.562889-4.403487 4.542964-4.403487C4.473225-4.403487 4.443337-4.383562 4.393524-4.293898C4.094645-3.815691 3.88543-3.656289 3.646326-3.656289S3.287671-3.805729 3.138232-3.975093C2.948941-4.204234 2.779577-4.403487 2.450809-4.403487C1.703611-4.403487 1.24533-3.476961 1.24533-3.267746C1.24533-3.217933 1.275218-3.158157 1.364882-3.158157S1.474471-3.20797 1.494396-3.267746C1.683686-3.726027 2.261519-3.73599 2.34122-3.73599C2.550436-3.73599 2.739726-3.666252 2.968867-3.58655C3.367372-3.437111 3.476961-3.437111 3.73599-3.437111C3.377335-3.008717 2.540473-2.291407 2.351183-2.132005L1.454545-1.295143C.777086-.627646 .428394-.059776 .428394 .009963C.428394 .109589 .52802 .109589 .547945 .109589C.627646 .109589 .647572 .089664 .707347-.019925C.936488-.368618 1.235367-.637609 1.554172-.637609C1.783313-.637609 1.882939-.547945 2.132005-.259029C2.30137-.049813 2.480697 .109589 2.769614 .109589C3.755915 .109589 4.333748-1.155666 4.333748-1.424658C4.333748-1.474471 4.293898-1.524284 4.214197-1.524284C4.124533-1.524284 4.104608-1.464508 4.07472-1.39477C3.845579-.747198 3.20797-.557908 2.879203-.557908C2.67995-.557908 2.500623-.617684 2.291407-.687422C1.952677-.816936 1.803238-.856787 1.594022-.856787C1.574097-.856787 1.414695-.856787 1.325031-.826899Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.3199' y='-3.586587' xlink:href='#g0-122'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.8 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
z
|
||||
\end{align*}
|
||||
\end{document}
|
22
hs24/lineare_algebra/graphs/media/Tex/55d91b848125dce5.svg
Normal file
@@ -0,0 +1,22 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='48.125107pt' height='23.910579pt' viewBox='147.79299 -23.910576 48.125107 23.910579'>
|
||||
<defs>
|
||||
<path id='g2-49' d='M2.929016-6.37609C2.929016-6.615193 2.929016-6.635118 2.699875-6.635118C2.082192-5.997509 1.205479-5.997509 .886675-5.997509V-5.688667C1.085928-5.688667 1.673724-5.688667 2.191781-5.947696V-.787049C2.191781-.428394 2.161893-.308842 1.265255-.308842H.946451V0C1.295143-.029888 2.161893-.029888 2.560399-.029888S3.825654-.029888 4.174346 0V-.308842H3.855542C2.958904-.308842 2.929016-.418431 2.929016-.787049V-6.37609Z'/>
|
||||
<path id='g2-50' d='M1.265255-.767123L2.321295-1.793275C3.875467-3.16812 4.473225-3.706102 4.473225-4.702366C4.473225-5.838107 3.576588-6.635118 2.361146-6.635118C1.235367-6.635118 .498132-5.718555 .498132-4.83188C.498132-4.273973 .996264-4.273973 1.026152-4.273973C1.195517-4.273973 1.544209-4.393524 1.544209-4.801993C1.544209-5.061021 1.364882-5.32005 1.016189-5.32005C.936488-5.32005 .916563-5.32005 .886675-5.310087C1.115816-5.957659 1.653798-6.326276 2.231631-6.326276C3.138232-6.326276 3.566625-5.519303 3.566625-4.702366C3.566625-3.905355 3.068493-3.118306 2.520548-2.500623L.607721-.368618C.498132-.259029 .498132-.239103 .498132 0H4.194271L4.473225-1.733499H4.224159C4.174346-1.43462 4.104608-.996264 4.004981-.846824C3.935243-.767123 3.277709-.767123 3.058531-.767123H1.265255Z'/>
|
||||
<path id='g1-0' d='M6.56538-2.291407C6.734745-2.291407 6.914072-2.291407 6.914072-2.49066S6.734745-2.689913 6.56538-2.689913H1.175592C1.006227-2.689913 .826899-2.689913 .826899-2.49066S1.006227-2.291407 1.175592-2.291407H6.56538Z'/>
|
||||
<path id='g3-20' d='M2.49066 23.501868H5.110834V22.953923H3.038605V.14944H5.110834V-.398506H2.49066V23.501868Z'/>
|
||||
<path id='g3-21' d='M2.211706 22.953923H.139477V23.501868H2.759651V-.398506H.139477V.14944H2.211706V22.953923Z'/>
|
||||
<path id='g0-67' d='M7.631382-6.665006C7.631382-6.854296 7.631382-6.94396 7.452055-6.94396C7.362391-6.94396 7.342466-6.924035 7.262765-6.854296L6.60523-6.266501C5.987547-6.764633 5.32005-6.94396 4.64259-6.94396C2.161893-6.94396 .637609-5.459527 .637609-3.417186S2.161893 .109589 4.64259 .109589C6.505604 .109589 7.631382-1.115816 7.631382-2.261519C7.631382-2.460772 7.561644-2.470735 7.392279-2.470735C7.262765-2.470735 7.173101-2.470735 7.163138-2.30137C7.0934-.966376 5.88792-.358655 4.881694-.358655C4.104608-.358655 3.267746-.597758 2.749689-1.205479C2.281445-1.77335 2.161893-2.520548 2.161893-3.417186C2.161893-3.975093 2.191781-5.051059 2.819427-5.708593C3.466999-6.366127 4.333748-6.475716 4.851806-6.475716C5.927771-6.475716 6.874222-5.718555 7.0934-4.4533C7.123288-4.26401 7.13325-4.244085 7.362391-4.244085C7.62142-4.244085 7.631382-4.26401 7.631382-4.523039V-6.665006Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='147.79299' y='-9.46463' xlink:href='#g0-67'/>
|
||||
<use x='157.727872' y='-23.51208' xlink:href='#g3-20'/>
|
||||
<use x='162.985955' y='-15.541877' xlink:href='#g2-49'/>
|
||||
<use x='181.804303' y='-15.541877' xlink:href='#g2-50'/>
|
||||
<use x='162.985955' y='-3.586709' xlink:href='#g2-49'/>
|
||||
<use x='177.929931' y='-3.586709' xlink:href='#g1-0'/>
|
||||
<use x='185.678678' y='-3.586709' xlink:href='#g2-49'/>
|
||||
<use x='190.66001' y='-23.51208' xlink:href='#g3-21'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 3.3 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\mathbf{C} \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/5683d89f396abe50.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-53' d='M4.473225-2.002491C4.473225-3.188045 3.656289-4.184309 2.580324-4.184309C2.102117-4.184309 1.673724-4.024907 1.315068-3.676214V-5.618929C1.514321-5.559153 1.843088-5.489415 2.161893-5.489415C3.387298-5.489415 4.084682-6.396015 4.084682-6.525529C4.084682-6.585305 4.054795-6.635118 3.985056-6.635118C3.975093-6.635118 3.955168-6.635118 3.905355-6.60523C3.706102-6.515567 3.217933-6.316314 2.550436-6.316314C2.15193-6.316314 1.693649-6.386052 1.225405-6.595268C1.145704-6.625156 1.125778-6.625156 1.105853-6.625156C1.006227-6.625156 1.006227-6.545455 1.006227-6.386052V-3.437111C1.006227-3.257783 1.006227-3.178082 1.145704-3.178082C1.215442-3.178082 1.235367-3.20797 1.275218-3.267746C1.384807-3.427148 1.753425-3.965131 2.560399-3.965131C3.078456-3.965131 3.327522-3.506849 3.407223-3.327522C3.566625-2.958904 3.58655-2.570361 3.58655-2.072229C3.58655-1.723537 3.58655-1.125778 3.347447-.707347C3.108344-.318804 2.739726-.059776 2.281445-.059776C1.554172-.059776 .986301-.587796 .816936-1.175592C.846824-1.165629 .876712-1.155666 .986301-1.155666C1.315068-1.155666 1.484433-1.404732 1.484433-1.643836S1.315068-2.132005 .986301-2.132005C.846824-2.132005 .498132-2.062267 .498132-1.603985C.498132-.747198 1.185554 .219178 2.30137 .219178C3.457036 .219178 4.473225-.737235 4.473225-2.002491Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-53'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.6 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
5
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/66e1bc57a83e0f07.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-48' d='M4.582814-3.188045C4.582814-3.985056 4.533001-4.782067 4.184309-5.519303C3.726027-6.475716 2.909091-6.635118 2.49066-6.635118C1.892902-6.635118 1.165629-6.37609 .757161-5.449564C.438356-4.762142 .388543-3.985056 .388543-3.188045C.388543-2.440847 .428394-1.544209 .836862-.787049C1.265255 .019925 1.992528 .219178 2.480697 .219178C3.01868 .219178 3.775841 .009963 4.214197-.936488C4.533001-1.62391 4.582814-2.400996 4.582814-3.188045ZM2.480697 0C2.092154 0 1.504359-.249066 1.325031-1.205479C1.215442-1.803238 1.215442-2.719801 1.215442-3.307597C1.215442-3.945205 1.215442-4.60274 1.295143-5.140722C1.484433-6.326276 2.231631-6.41594 2.480697-6.41594C2.809465-6.41594 3.466999-6.236613 3.656289-5.250311C3.755915-4.692403 3.755915-3.935243 3.755915-3.307597C3.755915-2.560399 3.755915-1.882939 3.646326-1.24533C3.496887-.298879 2.929016 0 2.480697 0Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-48'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.2 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
0
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/6ecf9f51170c1a70.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-49' d='M2.929016-6.37609C2.929016-6.615193 2.929016-6.635118 2.699875-6.635118C2.082192-5.997509 1.205479-5.997509 .886675-5.997509V-5.688667C1.085928-5.688667 1.673724-5.688667 2.191781-5.947696V-.787049C2.191781-.428394 2.161893-.308842 1.265255-.308842H.946451V0C1.295143-.029888 2.161893-.029888 2.560399-.029888S3.825654-.029888 4.174346 0V-.308842H3.855542C2.958904-.308842 2.929016-.418431 2.929016-.787049V-6.37609Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-49'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 813 B |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
1
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/810c550cdbbf29da.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-55' d='M4.742217-6.067248C4.83188-6.1868 4.83188-6.206725 4.83188-6.41594H2.410959C1.195517-6.41594 1.175592-6.545455 1.135741-6.734745H.886675L.557908-4.682441H.806974C.836862-4.841843 .926526-5.469489 1.05604-5.589041C1.125778-5.648817 1.902864-5.648817 2.032379-5.648817H4.094645C3.985056-5.489415 3.198007-4.403487 2.978829-4.07472C2.082192-2.729763 1.753425-1.344956 1.753425-.328767C1.753425-.229141 1.753425 .219178 2.211706 .219178S2.669988-.229141 2.669988-.328767V-.836862C2.669988-1.384807 2.699875-1.932752 2.779577-2.470735C2.819427-2.699875 2.958904-3.556663 3.39726-4.174346L4.742217-6.067248Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-55'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 998 B |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
7
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/8de07035cb22c903.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-51' d='M2.889166-3.506849C3.706102-3.775841 4.283935-4.473225 4.283935-5.260274C4.283935-6.07721 3.407223-6.635118 2.450809-6.635118C1.444583-6.635118 .687422-6.03736 .687422-5.280199C.687422-4.951432 .9066-4.762142 1.195517-4.762142C1.504359-4.762142 1.703611-4.98132 1.703611-5.270237C1.703611-5.768369 1.235367-5.768369 1.085928-5.768369C1.39477-6.256538 2.052304-6.386052 2.410959-6.386052C2.819427-6.386052 3.367372-6.166874 3.367372-5.270237C3.367372-5.150685 3.347447-4.572852 3.088418-4.134496C2.789539-3.656289 2.450809-3.626401 2.201743-3.616438C2.122042-3.606476 1.882939-3.58655 1.8132-3.58655C1.733499-3.576588 1.663761-3.566625 1.663761-3.466999C1.663761-3.35741 1.733499-3.35741 1.902864-3.35741H2.34122C3.158157-3.35741 3.526775-2.67995 3.526775-1.703611C3.526775-.348692 2.839352-.059776 2.400996-.059776C1.972603-.059776 1.225405-.229141 .876712-.816936C1.225405-.767123 1.534247-.986301 1.534247-1.364882C1.534247-1.723537 1.265255-1.92279 .976339-1.92279C.737235-1.92279 .418431-1.783313 .418431-1.344956C.418431-.438356 1.344956 .219178 2.430884 .219178C3.646326 .219178 4.552927-.687422 4.552927-1.703611C4.552927-2.520548 3.92528-3.297634 2.889166-3.506849Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-51'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.5 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
3
|
||||
\end{align*}
|
||||
\end{document}
|
43
hs24/lineare_algebra/graphs/media/Tex/af0481fdcc91b6cb.svg
Normal file
@@ -0,0 +1,43 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='120.030174pt' height='23.910579pt' viewBox='111.840455 -23.910576 120.030174 23.910579'>
|
||||
<defs>
|
||||
<path id='g3-20' d='M2.49066 23.501868H5.110834V22.953923H3.038605V.14944H5.110834V-.398506H2.49066V23.501868Z'/>
|
||||
<path id='g3-21' d='M2.211706 22.953923H.139477V23.501868H2.759651V-.398506H.139477V.14944H2.211706V22.953923Z'/>
|
||||
<path id='g2-100' d='M3.785803-.547945V.109589L5.250311 0V-.308842C4.552927-.308842 4.473225-.37858 4.473225-.86675V-6.914072L3.038605-6.804483V-6.495641C3.73599-6.495641 3.815691-6.425903 3.815691-5.937733V-3.785803C3.526775-4.144458 3.098381-4.403487 2.560399-4.403487C1.384807-4.403487 .33873-3.427148 .33873-2.141968C.33873-.876712 1.315068 .109589 2.450809 .109589C3.088418 .109589 3.536737-.229141 3.785803-.547945ZM3.785803-3.217933V-1.175592C3.785803-.996264 3.785803-.976339 3.676214-.806974C3.377335-.328767 2.929016-.109589 2.500623-.109589C2.052304-.109589 1.693649-.368618 1.454545-.747198C1.195517-1.155666 1.165629-1.723537 1.165629-2.132005C1.165629-2.500623 1.185554-3.098381 1.474471-3.5467C1.683686-3.855542 2.062267-4.184309 2.600249-4.184309C2.948941-4.184309 3.367372-4.034869 3.676214-3.58655C3.785803-3.417186 3.785803-3.39726 3.785803-3.217933Z'/>
|
||||
<path id='g2-101' d='M1.115816-2.510585C1.175592-3.995019 2.012453-4.244085 2.351183-4.244085C3.377335-4.244085 3.476961-2.899128 3.476961-2.510585H1.115816ZM1.105853-2.30137H3.88543C4.104608-2.30137 4.134496-2.30137 4.134496-2.510585C4.134496-3.496887 3.596513-4.463263 2.351183-4.463263C1.195517-4.463263 .278954-3.437111 .278954-2.191781C.278954-.856787 1.325031 .109589 2.470735 .109589C3.686177 .109589 4.134496-.996264 4.134496-1.185554C4.134496-1.285181 4.054795-1.305106 4.004981-1.305106C3.915318-1.305106 3.895392-1.24533 3.875467-1.165629C3.526775-.139477 2.630137-.139477 2.530511-.139477C2.032379-.139477 1.633873-.438356 1.404732-.806974C1.105853-1.285181 1.105853-1.942715 1.105853-2.30137Z'/>
|
||||
<path id='g2-116' d='M1.723537-3.985056H3.148194V-4.293898H1.723537V-6.127024H1.474471C1.464508-5.310087 1.165629-4.244085 .18929-4.204234V-3.985056H1.036115V-1.235367C1.036115-.009963 1.96264 .109589 2.321295 .109589C3.028643 .109589 3.307597-.597758 3.307597-1.235367V-1.803238H3.058531V-1.255293C3.058531-.518057 2.759651-.139477 2.391034-.139477C1.723537-.139477 1.723537-1.046077 1.723537-1.215442V-3.985056Z'/>
|
||||
<path id='g1-97' d='M3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.787049 3.666252-.86675 3.775841-1.305106C3.88543-1.723537 3.905355-1.823163 3.995019-2.201743L4.353674-3.596513C4.423412-3.875467 4.423412-3.895392 4.423412-3.935243C4.423412-4.104608 4.303861-4.204234 4.134496-4.204234C3.895392-4.204234 3.745953-3.985056 3.716065-3.765878ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g1-98' d='M2.381071-6.804483C2.381071-6.814446 2.381071-6.914072 2.251557-6.914072C2.022416-6.914072 1.295143-6.834371 1.036115-6.814446C.956413-6.804483 .846824-6.794521 .846824-6.615193C.846824-6.495641 .936488-6.495641 1.085928-6.495641C1.564134-6.495641 1.58406-6.425903 1.58406-6.326276C1.58406-6.256538 1.494396-5.917808 1.444583-5.708593L.627646-2.460772C.508095-1.96264 .468244-1.803238 .468244-1.454545C.468244-.508095 .996264 .109589 1.733499 .109589C2.909091 .109589 4.134496-1.374844 4.134496-2.809465C4.134496-3.716065 3.606476-4.403487 2.809465-4.403487C2.351183-4.403487 1.942715-4.11457 1.643836-3.805729L2.381071-6.804483ZM1.444583-3.038605C1.504359-3.257783 1.504359-3.277709 1.594022-3.387298C2.082192-4.034869 2.530511-4.184309 2.789539-4.184309C3.148194-4.184309 3.417186-3.88543 3.417186-3.247821C3.417186-2.660025 3.088418-1.514321 2.909091-1.135741C2.580324-.468244 2.122042-.109589 1.733499-.109589C1.39477-.109589 1.066002-.37858 1.066002-1.115816C1.066002-1.305106 1.066002-1.494396 1.225405-2.122042L1.444583-3.038605Z'/>
|
||||
<path id='g1-99' d='M3.945205-3.785803C3.785803-3.785803 3.646326-3.785803 3.506849-3.646326C3.347447-3.496887 3.327522-3.327522 3.327522-3.257783C3.327522-3.01868 3.506849-2.909091 3.696139-2.909091C3.985056-2.909091 4.254047-3.148194 4.254047-3.5467C4.254047-4.034869 3.785803-4.403487 3.078456-4.403487C1.733499-4.403487 .408468-2.978829 .408468-1.574097C.408468-.67746 .986301 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.414695-.109589 1.145704-.597758 1.145704-1.195517C1.145704-1.603985 1.344956-2.570361 1.683686-3.188045C1.992528-3.755915 2.540473-4.184309 3.088418-4.184309C3.427148-4.184309 3.805729-4.054795 3.945205-3.785803Z'/>
|
||||
<path id='g1-100' d='M5.140722-6.804483C5.140722-6.814446 5.140722-6.914072 5.011208-6.914072C4.861768-6.914072 3.915318-6.824408 3.745953-6.804483C3.666252-6.794521 3.606476-6.744707 3.606476-6.615193C3.606476-6.495641 3.696139-6.495641 3.845579-6.495641C4.323786-6.495641 4.343711-6.425903 4.343711-6.326276L4.313823-6.127024L3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.806974 3.666252-.876712 3.706102-1.046077L5.140722-6.804483ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g1-101' d='M1.863014-2.30137C2.15193-2.30137 2.889166-2.321295 3.387298-2.530511C4.084682-2.82939 4.134496-3.417186 4.134496-3.556663C4.134496-3.995019 3.755915-4.403487 3.068493-4.403487C1.96264-4.403487 .458281-3.437111 .458281-1.693649C.458281-.67746 1.046077 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.265255-.109589 1.175592-.946451 1.175592-1.265255C1.175592-1.384807 1.185554-1.693649 1.334994-2.30137H1.863014ZM1.39477-2.520548C1.783313-4.034869 2.809465-4.184309 3.068493-4.184309C3.536737-4.184309 3.805729-3.895392 3.805729-3.556663C3.805729-2.520548 2.211706-2.520548 1.803238-2.520548H1.39477Z'/>
|
||||
<path id='g1-102' d='M3.656289-3.985056H4.513076C4.712329-3.985056 4.811955-3.985056 4.811955-4.184309C4.811955-4.293898 4.712329-4.293898 4.542964-4.293898H3.716065L3.92528-5.429639C3.965131-5.638854 4.104608-6.346202 4.164384-6.465753C4.254047-6.655044 4.423412-6.804483 4.632628-6.804483C4.672478-6.804483 4.931507-6.804483 5.120797-6.625156C4.682441-6.585305 4.582814-6.236613 4.582814-6.087173C4.582814-5.858032 4.762142-5.738481 4.951432-5.738481C5.210461-5.738481 5.499377-5.957659 5.499377-6.336239C5.499377-6.794521 5.041096-7.023661 4.632628-7.023661C4.293898-7.023661 3.666252-6.844334 3.367372-5.858032C3.307597-5.648817 3.277709-5.549191 3.038605-4.293898H2.351183C2.161893-4.293898 2.052304-4.293898 2.052304-4.104608C2.052304-3.985056 2.141968-3.985056 2.331258-3.985056H2.988792L2.241594-.049813C2.062267 .916563 1.892902 1.823163 1.374844 1.823163C1.334994 1.823163 1.085928 1.823163 .896638 1.643836C1.354919 1.613948 1.444583 1.255293 1.444583 1.105853C1.444583 .876712 1.265255 .757161 1.075965 .757161C.816936 .757161 .52802 .976339 .52802 1.354919C.52802 1.803238 .966376 2.042341 1.374844 2.042341C1.92279 2.042341 2.321295 1.454545 2.500623 1.075965C2.819427 .448319 3.048568-.757161 3.058531-.826899L3.656289-3.985056Z'/>
|
||||
<path id='g1-103' d='M4.692403-3.755915C4.702366-3.815691 4.722291-3.865504 4.722291-3.935243C4.722291-4.104608 4.60274-4.204234 4.433375-4.204234C4.333748-4.204234 4.064757-4.134496 4.024907-3.775841C3.845579-4.144458 3.496887-4.403487 3.098381-4.403487C1.96264-4.403487 .727273-3.008717 .727273-1.574097C.727273-.587796 1.334994 0 2.052304 0C2.6401 0 3.108344-.468244 3.20797-.577833L3.217933-.56787C3.008717 .318804 2.889166 .727273 2.889166 .747198C2.849315 .836862 2.510585 1.823163 1.454545 1.823163C1.265255 1.823163 .936488 1.8132 .657534 1.723537C.956413 1.633873 1.066002 1.374844 1.066002 1.205479C1.066002 1.046077 .956413 .856787 .687422 .856787C.468244 .856787 .14944 1.036115 .14944 1.43462C.14944 1.843088 .518057 2.042341 1.474471 2.042341C2.719801 2.042341 3.437111 1.265255 3.58655 .667497L4.692403-3.755915ZM3.39726-1.275218C3.337484-1.016189 3.108344-.767123 2.889166-.577833C2.67995-.398506 2.371108-.219178 2.082192-.219178C1.58406-.219178 1.43462-.737235 1.43462-1.135741C1.43462-1.613948 1.723537-2.789539 1.992528-3.297634C2.261519-3.785803 2.689913-4.184309 3.108344-4.184309C3.765878-4.184309 3.905355-3.377335 3.905355-3.327522S3.88543-3.217933 3.875467-3.178082L3.39726-1.275218Z'/>
|
||||
<path id='g1-104' d='M2.859278-6.804483C2.859278-6.814446 2.859278-6.914072 2.729763-6.914072C2.500623-6.914072 1.77335-6.834371 1.514321-6.814446C1.43462-6.804483 1.325031-6.794521 1.325031-6.615193C1.325031-6.495641 1.414695-6.495641 1.564134-6.495641C2.042341-6.495641 2.062267-6.425903 2.062267-6.326276L2.032379-6.127024L.587796-.388543C.547945-.249066 .547945-.229141 .547945-.169365C.547945 .059776 .747198 .109589 .836862 .109589C.996264 .109589 1.155666-.009963 1.205479-.14944L1.39477-.9066L1.613948-1.803238C1.673724-2.022416 1.733499-2.241594 1.783313-2.470735C1.803238-2.530511 1.882939-2.859278 1.892902-2.919054C1.92279-3.008717 2.231631-3.566625 2.570361-3.835616C2.789539-3.995019 3.098381-4.184309 3.526775-4.184309S4.064757-3.845579 4.064757-3.486924C4.064757-2.948941 3.686177-1.863014 3.447073-1.255293C3.367372-1.026152 3.317559-.9066 3.317559-.707347C3.317559-.239103 3.666252 .109589 4.134496 .109589C5.070984 .109589 5.439601-1.344956 5.439601-1.424658C5.439601-1.524284 5.349938-1.524284 5.32005-1.524284C5.220423-1.524284 5.220423-1.494396 5.17061-1.344956C5.021171-.816936 4.702366-.109589 4.154421-.109589C3.985056-.109589 3.915318-.209215 3.915318-.438356C3.915318-.687422 4.004981-.926526 4.094645-1.145704C4.254047-1.574097 4.702366-2.759651 4.702366-3.337484C4.702366-3.985056 4.303861-4.403487 3.556663-4.403487C2.929016-4.403487 2.450809-4.094645 2.082192-3.636364L2.859278-6.804483Z'/>
|
||||
<path id='g0-1' d='M1.912827-2.49066C1.912827-2.779577 1.673724-3.01868 1.384807-3.01868S.856787-2.779577 .856787-2.49066S1.09589-1.96264 1.384807-1.96264S1.912827-2.201743 1.912827-2.49066Z'/>
|
||||
<path id='g0-41' d='M7.232877-3.257783C7.651308-2.899128 8.159402-2.6401 8.488169-2.49066C8.129514-2.331258 7.641345-2.072229 7.232877-1.723537H.9066C.737235-1.723537 .547945-1.723537 .547945-1.524284S.727273-1.325031 .896638-1.325031H6.784558C6.306351-.86675 5.788294 .009963 5.788294 .139477C5.788294 .249066 5.917808 .249066 5.977584 .249066C6.057285 .249066 6.127024 .249066 6.166874 .169365C6.37609-.209215 6.655044-.737235 7.302615-1.315068C7.990037-1.92279 8.657534-2.191781 9.175592-2.34122C9.344956-2.400996 9.354919-2.410959 9.374844-2.430884C9.39477-2.440847 9.39477-2.470735 9.39477-2.49066S9.39477-2.530511 9.384807-2.550436L9.354919-2.570361C9.334994-2.580324 9.325031-2.590286 9.135741-2.650062C7.790785-3.048568 6.794521-3.955168 6.236613-5.021171C6.127024-5.220423 6.117061-5.230386 5.977584-5.230386C5.917808-5.230386 5.788294-5.230386 5.788294-5.120797C5.788294-4.991283 6.296389-4.124533 6.784558-3.656289H.896638C.727273-3.656289 .547945-3.656289 .547945-3.457036S.737235-3.257783 .9066-3.257783H7.232877Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='111.840455' y='-9.46463' xlink:href='#g0-41'/>
|
||||
<use x='124.570457' y='-9.46463' xlink:href='#g2-100'/>
|
||||
<use x='130.105273' y='-9.46463' xlink:href='#g2-101'/>
|
||||
<use x='134.533125' y='-9.46463' xlink:href='#g2-116'/>
|
||||
<use x='143.388758' y='-23.51208' xlink:href='#g3-20'/>
|
||||
<use x='148.646842' y='-15.541877' xlink:href='#g1-97'/>
|
||||
<use x='164.330521' y='-15.541877' xlink:href='#g1-98'/>
|
||||
<use x='149.124223' y='-3.586709' xlink:href='#g1-99'/>
|
||||
<use x='163.875623' y='-3.586709' xlink:href='#g1-100'/>
|
||||
<use x='169.061042' y='-23.51208' xlink:href='#g3-21'/>
|
||||
<use x='176.532991' y='-9.46463' xlink:href='#g0-1'/>
|
||||
<use x='181.514266' y='-9.46463' xlink:href='#g2-100'/>
|
||||
<use x='187.049083' y='-9.46463' xlink:href='#g2-101'/>
|
||||
<use x='191.476934' y='-9.46463' xlink:href='#g2-116'/>
|
||||
<use x='200.332567' y='-23.51208' xlink:href='#g3-20'/>
|
||||
<use x='205.825868' y='-15.541877' xlink:href='#g1-101'/>
|
||||
<use x='220.662595' y='-15.541877' xlink:href='#g1-102'/>
|
||||
<use x='205.590651' y='-3.586709' xlink:href='#g1-103'/>
|
||||
<use x='220.767548' y='-3.586709' xlink:href='#g1-104'/>
|
||||
<use x='226.612542' y='-23.51208' xlink:href='#g3-21'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 14 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\Rightarrow \text{det } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \text{det } \begin{bmatrix} e & f \\ g & h \end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/b330e3953bf029d7.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-54' d='M1.315068-3.267746V-3.506849C1.315068-6.027397 2.550436-6.386052 3.058531-6.386052C3.297634-6.386052 3.716065-6.326276 3.935243-5.987547C3.785803-5.987547 3.387298-5.987547 3.387298-5.539228C3.387298-5.230386 3.626401-5.080946 3.845579-5.080946C4.004981-5.080946 4.303861-5.17061 4.303861-5.559153C4.303861-6.156912 3.865504-6.635118 3.038605-6.635118C1.763387-6.635118 .418431-5.349938 .418431-3.148194C.418431-.488169 1.574097 .219178 2.500623 .219178C3.606476 .219178 4.552927-.71731 4.552927-2.032379C4.552927-3.297634 3.666252-4.254047 2.560399-4.254047C1.882939-4.254047 1.514321-3.745953 1.315068-3.267746ZM2.500623-.059776C1.872976-.059776 1.574097-.657534 1.514321-.806974C1.334994-1.275218 1.334994-2.072229 1.334994-2.251557C1.334994-3.028643 1.653798-4.024907 2.550436-4.024907C2.709838-4.024907 3.16812-4.024907 3.476961-3.407223C3.656289-3.038605 3.656289-2.530511 3.656289-2.042341C3.656289-1.564134 3.656289-1.066002 3.486924-.707347C3.188045-.109589 2.729763-.059776 2.500623-.059776Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-54'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.4 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
6
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/b47c9feb1c667bc8.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-56' d='M1.62391-4.552927C1.165629-4.851806 1.125778-5.190535 1.125778-5.3599C1.125778-5.967621 1.77335-6.386052 2.480697-6.386052C3.20797-6.386052 3.845579-5.867995 3.845579-5.150685C3.845579-4.582814 3.457036-4.104608 2.859278-3.755915L1.62391-4.552927ZM3.078456-3.606476C3.795766-3.975093 4.283935-4.493151 4.283935-5.150685C4.283935-6.067248 3.39726-6.635118 2.49066-6.635118C1.494396-6.635118 .687422-5.897883 .687422-4.971357C.687422-4.79203 .707347-4.343711 1.125778-3.875467C1.235367-3.755915 1.603985-3.506849 1.853051-3.337484C1.275218-3.048568 .418431-2.49066 .418431-1.504359C.418431-.448319 1.43462 .219178 2.480697 .219178C3.606476 .219178 4.552927-.607721 4.552927-1.673724C4.552927-2.032379 4.443337-2.480697 4.064757-2.899128C3.875467-3.108344 3.716065-3.20797 3.078456-3.606476ZM2.082192-3.188045L3.307597-2.410959C3.58655-2.221669 4.054795-1.92279 4.054795-1.315068C4.054795-.577833 3.307597-.059776 2.49066-.059776C1.633873-.059776 .916563-.67746 .916563-1.504359C.916563-2.082192 1.235367-2.719801 2.082192-3.188045Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-56'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.4 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
8
|
||||
\end{align*}
|
||||
\end{document}
|
18
hs24/lineare_algebra/graphs/media/Tex/b76d9cac9ebabdd5.svg
Normal file
@@ -0,0 +1,18 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='30.441482pt' height='23.910579pt' viewBox='156.634803 -23.910576 30.441482 23.910579'>
|
||||
<defs>
|
||||
<path id='g0-48' d='M4.582814-3.188045C4.582814-3.985056 4.533001-4.782067 4.184309-5.519303C3.726027-6.475716 2.909091-6.635118 2.49066-6.635118C1.892902-6.635118 1.165629-6.37609 .757161-5.449564C.438356-4.762142 .388543-3.985056 .388543-3.188045C.388543-2.440847 .428394-1.544209 .836862-.787049C1.265255 .019925 1.992528 .219178 2.480697 .219178C3.01868 .219178 3.775841 .009963 4.214197-.936488C4.533001-1.62391 4.582814-2.400996 4.582814-3.188045ZM2.480697 0C2.092154 0 1.504359-.249066 1.325031-1.205479C1.215442-1.803238 1.215442-2.719801 1.215442-3.307597C1.215442-3.945205 1.215442-4.60274 1.295143-5.140722C1.484433-6.326276 2.231631-6.41594 2.480697-6.41594C2.809465-6.41594 3.466999-6.236613 3.656289-5.250311C3.755915-4.692403 3.755915-3.935243 3.755915-3.307597C3.755915-2.560399 3.755915-1.882939 3.646326-1.24533C3.496887-.298879 2.929016 0 2.480697 0Z'/>
|
||||
<path id='g0-49' d='M2.929016-6.37609C2.929016-6.615193 2.929016-6.635118 2.699875-6.635118C2.082192-5.997509 1.205479-5.997509 .886675-5.997509V-5.688667C1.085928-5.688667 1.673724-5.688667 2.191781-5.947696V-.787049C2.191781-.428394 2.161893-.308842 1.265255-.308842H.946451V0C1.295143-.029888 2.161893-.029888 2.560399-.029888S3.825654-.029888 4.174346 0V-.308842H3.855542C2.958904-.308842 2.929016-.418431 2.929016-.787049V-6.37609Z'/>
|
||||
<path id='g1-20' d='M2.49066 23.501868H5.110834V22.953923H3.038605V.14944H5.110834V-.398506H2.49066V23.501868Z'/>
|
||||
<path id='g1-21' d='M2.211706 22.953923H.139477V23.501868H2.759651V-.398506H.139477V.14944H2.211706V22.953923Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='156.634803' y='-23.51208' xlink:href='#g1-20'/>
|
||||
<use x='161.892886' y='-15.541877' xlink:href='#g0-49'/>
|
||||
<use x='176.836862' y='-15.541877' xlink:href='#g0-48'/>
|
||||
<use x='161.892886' y='-3.586709' xlink:href='#g0-48'/>
|
||||
<use x='176.836862' y='-3.586709' xlink:href='#g0-49'/>
|
||||
<use x='181.818197' y='-23.51208' xlink:href='#g1-21'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 2.1 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/ba96de15f98acfc8.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='7.748748pt' height='6.641773pt' viewBox='167.98117 -9.398133 7.748748 6.641773'>
|
||||
<defs>
|
||||
<path id='g0-0' d='M6.56538-2.291407C6.734745-2.291407 6.914072-2.291407 6.914072-2.49066S6.734745-2.689913 6.56538-2.689913H1.175592C1.006227-2.689913 .826899-2.689913 .826899-2.49066S1.006227-2.291407 1.175592-2.291407H6.56538Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='167.98117' y='-3.586587' xlink:href='#g0-0'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 602 B |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
-
|
||||
\end{align*}
|
||||
\end{document}
|
20
hs24/lineare_algebra/graphs/media/Tex/c11afa39e98cdbf6.svg
Normal file
@@ -0,0 +1,20 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='40.251832pt' height='23.910579pt' viewBox='151.729628 -23.910576 40.251832 23.910579'>
|
||||
<defs>
|
||||
<path id='g2-20' d='M2.49066 23.501868H5.110834V22.953923H3.038605V.14944H5.110834V-.398506H2.49066V23.501868Z'/>
|
||||
<path id='g2-21' d='M2.211706 22.953923H.139477V23.501868H2.759651V-.398506H.139477V.14944H2.211706V22.953923Z'/>
|
||||
<path id='g1-48' d='M4.582814-3.188045C4.582814-3.985056 4.533001-4.782067 4.184309-5.519303C3.726027-6.475716 2.909091-6.635118 2.49066-6.635118C1.892902-6.635118 1.165629-6.37609 .757161-5.449564C.438356-4.762142 .388543-3.985056 .388543-3.188045C.388543-2.440847 .428394-1.544209 .836862-.787049C1.265255 .019925 1.992528 .219178 2.480697 .219178C3.01868 .219178 3.775841 .009963 4.214197-.936488C4.533001-1.62391 4.582814-2.400996 4.582814-3.188045ZM2.480697 0C2.092154 0 1.504359-.249066 1.325031-1.205479C1.215442-1.803238 1.215442-2.719801 1.215442-3.307597C1.215442-3.945205 1.215442-4.60274 1.295143-5.140722C1.484433-6.326276 2.231631-6.41594 2.480697-6.41594C2.809465-6.41594 3.466999-6.236613 3.656289-5.250311C3.755915-4.692403 3.755915-3.935243 3.755915-3.307597C3.755915-2.560399 3.755915-1.882939 3.646326-1.24533C3.496887-.298879 2.929016 0 2.480697 0Z'/>
|
||||
<path id='g1-49' d='M2.929016-6.37609C2.929016-6.615193 2.929016-6.635118 2.699875-6.635118C2.082192-5.997509 1.205479-5.997509 .886675-5.997509V-5.688667C1.085928-5.688667 1.673724-5.688667 2.191781-5.947696V-.787049C2.191781-.428394 2.161893-.308842 1.265255-.308842H.946451V0C1.295143-.029888 2.161893-.029888 2.560399-.029888S3.825654-.029888 4.174346 0V-.308842H3.855542C2.958904-.308842 2.929016-.418431 2.929016-.787049V-6.37609Z'/>
|
||||
<path id='g0-66' d='M2.769614-3.73599V-6.366127H4.582814C5.589041-6.366127 5.768369-5.579078 5.768369-5.120797C5.768369-4.353674 5.290162-3.73599 4.323786-3.73599H2.769614ZM5.459527-3.566625C6.535492-3.755915 7.183064-4.353674 7.183064-5.120797C7.183064-6.03736 6.316314-6.834371 4.712329-6.834371H.388543V-6.366127H1.464508V-.468244H.388543V0H5.011208C6.665006 0 7.501868-.876712 7.501868-1.853051C7.501868-2.809465 6.645081-3.476961 5.459527-3.566625ZM4.60274-.468244H2.769614V-3.377335H4.702366C4.901619-3.377335 5.369863-3.377335 5.708593-2.948941C6.03736-2.530511 6.03736-1.972603 6.03736-1.863014C6.03736-1.743462 6.03736-.468244 4.60274-.468244Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='151.729628' y='-9.46463' xlink:href='#g0-66'/>
|
||||
<use x='161.539979' y='-23.51208' xlink:href='#g2-20'/>
|
||||
<use x='166.798063' y='-15.541877' xlink:href='#g1-49'/>
|
||||
<use x='181.742038' y='-15.541877' xlink:href='#g1-49'/>
|
||||
<use x='166.798063' y='-3.586709' xlink:href='#g1-48'/>
|
||||
<use x='181.742038' y='-3.586709' xlink:href='#g1-49'/>
|
||||
<use x='186.723373' y='-23.51208' xlink:href='#g2-21'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 2.8 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\mathbf{B} \begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
57
hs24/lineare_algebra/graphs/media/Tex/d0267d7184e4c44b.svg
Normal file
@@ -0,0 +1,57 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='247.772226pt' height='8.855684pt' viewBox='47.969498 -10.505089 247.772226 8.855684'>
|
||||
<defs>
|
||||
<path id='g2-43' d='M4.07472-2.291407H6.854296C6.993773-2.291407 7.183064-2.291407 7.183064-2.49066S6.993773-2.689913 6.854296-2.689913H4.07472V-5.479452C4.07472-5.618929 4.07472-5.808219 3.875467-5.808219S3.676214-5.618929 3.676214-5.479452V-2.689913H.886675C.747198-2.689913 .557908-2.689913 .557908-2.49066S.747198-2.291407 .886675-2.291407H3.676214V.498132C3.676214 .637609 3.676214 .826899 3.875467 .826899S4.07472 .637609 4.07472 .498132V-2.291407Z'/>
|
||||
<path id='g1-97' d='M3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.787049 3.666252-.86675 3.775841-1.305106C3.88543-1.723537 3.905355-1.823163 3.995019-2.201743L4.353674-3.596513C4.423412-3.875467 4.423412-3.895392 4.423412-3.935243C4.423412-4.104608 4.303861-4.204234 4.134496-4.204234C3.895392-4.204234 3.745953-3.985056 3.716065-3.765878ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g1-98' d='M2.381071-6.804483C2.381071-6.814446 2.381071-6.914072 2.251557-6.914072C2.022416-6.914072 1.295143-6.834371 1.036115-6.814446C.956413-6.804483 .846824-6.794521 .846824-6.615193C.846824-6.495641 .936488-6.495641 1.085928-6.495641C1.564134-6.495641 1.58406-6.425903 1.58406-6.326276C1.58406-6.256538 1.494396-5.917808 1.444583-5.708593L.627646-2.460772C.508095-1.96264 .468244-1.803238 .468244-1.454545C.468244-.508095 .996264 .109589 1.733499 .109589C2.909091 .109589 4.134496-1.374844 4.134496-2.809465C4.134496-3.716065 3.606476-4.403487 2.809465-4.403487C2.351183-4.403487 1.942715-4.11457 1.643836-3.805729L2.381071-6.804483ZM1.444583-3.038605C1.504359-3.257783 1.504359-3.277709 1.594022-3.387298C2.082192-4.034869 2.530511-4.184309 2.789539-4.184309C3.148194-4.184309 3.417186-3.88543 3.417186-3.247821C3.417186-2.660025 3.088418-1.514321 2.909091-1.135741C2.580324-.468244 2.122042-.109589 1.733499-.109589C1.39477-.109589 1.066002-.37858 1.066002-1.115816C1.066002-1.305106 1.066002-1.494396 1.225405-2.122042L1.444583-3.038605Z'/>
|
||||
<path id='g1-99' d='M3.945205-3.785803C3.785803-3.785803 3.646326-3.785803 3.506849-3.646326C3.347447-3.496887 3.327522-3.327522 3.327522-3.257783C3.327522-3.01868 3.506849-2.909091 3.696139-2.909091C3.985056-2.909091 4.254047-3.148194 4.254047-3.5467C4.254047-4.034869 3.785803-4.403487 3.078456-4.403487C1.733499-4.403487 .408468-2.978829 .408468-1.574097C.408468-.67746 .986301 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.414695-.109589 1.145704-.597758 1.145704-1.195517C1.145704-1.603985 1.344956-2.570361 1.683686-3.188045C1.992528-3.755915 2.540473-4.184309 3.088418-4.184309C3.427148-4.184309 3.805729-4.054795 3.945205-3.785803Z'/>
|
||||
<path id='g1-100' d='M5.140722-6.804483C5.140722-6.814446 5.140722-6.914072 5.011208-6.914072C4.861768-6.914072 3.915318-6.824408 3.745953-6.804483C3.666252-6.794521 3.606476-6.744707 3.606476-6.615193C3.606476-6.495641 3.696139-6.495641 3.845579-6.495641C4.323786-6.495641 4.343711-6.425903 4.343711-6.326276L4.313823-6.127024L3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.806974 3.666252-.876712 3.706102-1.046077L5.140722-6.804483ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g1-101' d='M1.863014-2.30137C2.15193-2.30137 2.889166-2.321295 3.387298-2.530511C4.084682-2.82939 4.134496-3.417186 4.134496-3.556663C4.134496-3.995019 3.755915-4.403487 3.068493-4.403487C1.96264-4.403487 .458281-3.437111 .458281-1.693649C.458281-.67746 1.046077 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.265255-.109589 1.175592-.946451 1.175592-1.265255C1.175592-1.384807 1.185554-1.693649 1.334994-2.30137H1.863014ZM1.39477-2.520548C1.783313-4.034869 2.809465-4.184309 3.068493-4.184309C3.536737-4.184309 3.805729-3.895392 3.805729-3.556663C3.805729-2.520548 2.211706-2.520548 1.803238-2.520548H1.39477Z'/>
|
||||
<path id='g1-102' d='M3.656289-3.985056H4.513076C4.712329-3.985056 4.811955-3.985056 4.811955-4.184309C4.811955-4.293898 4.712329-4.293898 4.542964-4.293898H3.716065L3.92528-5.429639C3.965131-5.638854 4.104608-6.346202 4.164384-6.465753C4.254047-6.655044 4.423412-6.804483 4.632628-6.804483C4.672478-6.804483 4.931507-6.804483 5.120797-6.625156C4.682441-6.585305 4.582814-6.236613 4.582814-6.087173C4.582814-5.858032 4.762142-5.738481 4.951432-5.738481C5.210461-5.738481 5.499377-5.957659 5.499377-6.336239C5.499377-6.794521 5.041096-7.023661 4.632628-7.023661C4.293898-7.023661 3.666252-6.844334 3.367372-5.858032C3.307597-5.648817 3.277709-5.549191 3.038605-4.293898H2.351183C2.161893-4.293898 2.052304-4.293898 2.052304-4.104608C2.052304-3.985056 2.141968-3.985056 2.331258-3.985056H2.988792L2.241594-.049813C2.062267 .916563 1.892902 1.823163 1.374844 1.823163C1.334994 1.823163 1.085928 1.823163 .896638 1.643836C1.354919 1.613948 1.444583 1.255293 1.444583 1.105853C1.444583 .876712 1.265255 .757161 1.075965 .757161C.816936 .757161 .52802 .976339 .52802 1.354919C.52802 1.803238 .966376 2.042341 1.374844 2.042341C1.92279 2.042341 2.321295 1.454545 2.500623 1.075965C2.819427 .448319 3.048568-.757161 3.058531-.826899L3.656289-3.985056Z'/>
|
||||
<path id='g1-103' d='M4.692403-3.755915C4.702366-3.815691 4.722291-3.865504 4.722291-3.935243C4.722291-4.104608 4.60274-4.204234 4.433375-4.204234C4.333748-4.204234 4.064757-4.134496 4.024907-3.775841C3.845579-4.144458 3.496887-4.403487 3.098381-4.403487C1.96264-4.403487 .727273-3.008717 .727273-1.574097C.727273-.587796 1.334994 0 2.052304 0C2.6401 0 3.108344-.468244 3.20797-.577833L3.217933-.56787C3.008717 .318804 2.889166 .727273 2.889166 .747198C2.849315 .836862 2.510585 1.823163 1.454545 1.823163C1.265255 1.823163 .936488 1.8132 .657534 1.723537C.956413 1.633873 1.066002 1.374844 1.066002 1.205479C1.066002 1.046077 .956413 .856787 .687422 .856787C.468244 .856787 .14944 1.036115 .14944 1.43462C.14944 1.843088 .518057 2.042341 1.474471 2.042341C2.719801 2.042341 3.437111 1.265255 3.58655 .667497L4.692403-3.755915ZM3.39726-1.275218C3.337484-1.016189 3.108344-.767123 2.889166-.577833C2.67995-.398506 2.371108-.219178 2.082192-.219178C1.58406-.219178 1.43462-.737235 1.43462-1.135741C1.43462-1.613948 1.723537-2.789539 1.992528-3.297634C2.261519-3.785803 2.689913-4.184309 3.108344-4.184309C3.765878-4.184309 3.905355-3.377335 3.905355-3.327522S3.88543-3.217933 3.875467-3.178082L3.39726-1.275218Z'/>
|
||||
<path id='g1-104' d='M2.859278-6.804483C2.859278-6.814446 2.859278-6.914072 2.729763-6.914072C2.500623-6.914072 1.77335-6.834371 1.514321-6.814446C1.43462-6.804483 1.325031-6.794521 1.325031-6.615193C1.325031-6.495641 1.414695-6.495641 1.564134-6.495641C2.042341-6.495641 2.062267-6.425903 2.062267-6.326276L2.032379-6.127024L.587796-.388543C.547945-.249066 .547945-.229141 .547945-.169365C.547945 .059776 .747198 .109589 .836862 .109589C.996264 .109589 1.155666-.009963 1.205479-.14944L1.39477-.9066L1.613948-1.803238C1.673724-2.022416 1.733499-2.241594 1.783313-2.470735C1.803238-2.530511 1.882939-2.859278 1.892902-2.919054C1.92279-3.008717 2.231631-3.566625 2.570361-3.835616C2.789539-3.995019 3.098381-4.184309 3.526775-4.184309S4.064757-3.845579 4.064757-3.486924C4.064757-2.948941 3.686177-1.863014 3.447073-1.255293C3.367372-1.026152 3.317559-.9066 3.317559-.707347C3.317559-.239103 3.666252 .109589 4.134496 .109589C5.070984 .109589 5.439601-1.344956 5.439601-1.424658C5.439601-1.524284 5.349938-1.524284 5.32005-1.524284C5.220423-1.524284 5.220423-1.494396 5.17061-1.344956C5.021171-.816936 4.702366-.109589 4.154421-.109589C3.985056-.109589 3.915318-.209215 3.915318-.438356C3.915318-.687422 4.004981-.926526 4.094645-1.145704C4.254047-1.574097 4.702366-2.759651 4.702366-3.337484C4.702366-3.985056 4.303861-4.403487 3.556663-4.403487C2.929016-4.403487 2.450809-4.094645 2.082192-3.636364L2.859278-6.804483Z'/>
|
||||
<path id='g1-105' d='M2.82939-6.22665C2.82939-6.425903 2.689913-6.585305 2.460772-6.585305C2.191781-6.585305 1.92279-6.326276 1.92279-6.057285C1.92279-5.867995 2.062267-5.69863 2.30137-5.69863C2.530511-5.69863 2.82939-5.927771 2.82939-6.22665ZM2.072229-2.480697C2.191781-2.769614 2.191781-2.789539 2.291407-3.058531C2.371108-3.257783 2.420922-3.39726 2.420922-3.58655C2.420922-4.034869 2.102117-4.403487 1.603985-4.403487C.667497-4.403487 .288917-2.958904 .288917-2.86924C.288917-2.769614 .388543-2.769614 .408468-2.769614C.508095-2.769614 .518057-2.789539 .56787-2.948941C.836862-3.88543 1.235367-4.184309 1.574097-4.184309C1.653798-4.184309 1.823163-4.184309 1.823163-3.865504C1.823163-3.656289 1.753425-3.447073 1.713574-3.347447C1.633873-3.088418 1.185554-1.932752 1.026152-1.504359C.926526-1.24533 .797011-.916563 .797011-.707347C.797011-.239103 1.135741 .109589 1.613948 .109589C2.550436 .109589 2.919054-1.334994 2.919054-1.424658C2.919054-1.524284 2.82939-1.524284 2.799502-1.524284C2.699875-1.524284 2.699875-1.494396 2.650062-1.344956C2.470735-.71731 2.141968-.109589 1.633873-.109589C1.464508-.109589 1.39477-.209215 1.39477-.438356C1.39477-.687422 1.454545-.826899 1.683686-1.43462L2.072229-2.480697Z'/>
|
||||
<path id='g0-0' d='M6.56538-2.291407C6.734745-2.291407 6.914072-2.291407 6.914072-2.49066S6.734745-2.689913 6.56538-2.689913H1.175592C1.006227-2.689913 .826899-2.689913 .826899-2.49066S1.006227-2.291407 1.175592-2.291407H6.56538Z'/>
|
||||
<path id='g0-1' d='M1.912827-2.49066C1.912827-2.779577 1.673724-3.01868 1.384807-3.01868S.856787-2.779577 .856787-2.49066S1.09589-1.96264 1.384807-1.96264S1.912827-2.201743 1.912827-2.49066Z'/>
|
||||
<path id='g0-41' d='M7.232877-3.257783C7.651308-2.899128 8.159402-2.6401 8.488169-2.49066C8.129514-2.331258 7.641345-2.072229 7.232877-1.723537H.9066C.737235-1.723537 .547945-1.723537 .547945-1.524284S.727273-1.325031 .896638-1.325031H6.784558C6.306351-.86675 5.788294 .009963 5.788294 .139477C5.788294 .249066 5.917808 .249066 5.977584 .249066C6.057285 .249066 6.127024 .249066 6.166874 .169365C6.37609-.209215 6.655044-.737235 7.302615-1.315068C7.990037-1.92279 8.657534-2.191781 9.175592-2.34122C9.344956-2.400996 9.354919-2.410959 9.374844-2.430884C9.39477-2.440847 9.39477-2.470735 9.39477-2.49066S9.39477-2.530511 9.384807-2.550436L9.354919-2.570361C9.334994-2.580324 9.325031-2.590286 9.135741-2.650062C7.790785-3.048568 6.794521-3.955168 6.236613-5.021171C6.127024-5.220423 6.117061-5.230386 5.977584-5.230386C5.917808-5.230386 5.788294-5.230386 5.788294-5.120797C5.788294-4.991283 6.296389-4.124533 6.784558-3.656289H.896638C.727273-3.656289 .547945-3.656289 .547945-3.457036S.737235-3.257783 .9066-3.257783H7.232877Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='47.969498' y='-3.586587' xlink:href='#g0-41'/>
|
||||
<use x='60.699499' y='-3.586587' xlink:href='#g1-97'/>
|
||||
<use x='68.179519' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='73.160793' y='-3.586587' xlink:href='#g1-101'/>
|
||||
<use x='80.013531' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='84.994805' y='-3.586587' xlink:href='#g1-105'/>
|
||||
<use x='90.64093' y='-3.586587' xlink:href='#g2-43'/>
|
||||
<use x='100.603543' y='-3.586587' xlink:href='#g1-98'/>
|
||||
<use x='107.093043' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='112.074318' y='-3.586587' xlink:href='#g1-102'/>
|
||||
<use x='120.238131' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='125.219405' y='-3.586587' xlink:href='#g1-103'/>
|
||||
<use x='132.542579' y='-3.586587' xlink:href='#g2-43'/>
|
||||
<use x='142.505193' y='-3.586587' xlink:href='#g1-99'/>
|
||||
<use x='149.030455' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='154.011729' y='-3.586587' xlink:href='#g1-100'/>
|
||||
<use x='161.411028' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='166.392302' y='-3.586587' xlink:href='#g1-104'/>
|
||||
<use x='174.346238' y='-3.586587' xlink:href='#g0-0'/>
|
||||
<use x='184.308851' y='-3.586587' xlink:href='#g1-103'/>
|
||||
<use x='191.632025' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='196.613299' y='-3.586587' xlink:href='#g1-101'/>
|
||||
<use x='203.466037' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='208.447311' y='-3.586587' xlink:href='#g1-99'/>
|
||||
<use x='214.972574' y='-3.586587' xlink:href='#g0-0'/>
|
||||
<use x='224.935187' y='-3.586587' xlink:href='#g1-104'/>
|
||||
<use x='232.889123' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='237.870397' y='-3.586587' xlink:href='#g1-102'/>
|
||||
<use x='246.03421' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='251.015485' y='-3.586587' xlink:href='#g1-97'/>
|
||||
<use x='258.495505' y='-3.586587' xlink:href='#g0-0'/>
|
||||
<use x='268.458118' y='-3.586587' xlink:href='#g1-105'/>
|
||||
<use x='274.104243' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='279.085517' y='-3.586587' xlink:href='#g1-100'/>
|
||||
<use x='286.484815' y='-3.586587' xlink:href='#g0-1'/>
|
||||
<use x='291.46609' y='-3.586587' xlink:href='#g1-98'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 14 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\Rightarrow a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/d3c1af651a272204.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='5.693932pt' height='4.289468pt' viewBox='169.008582 -7.876055 5.693932 4.289468'>
|
||||
<defs>
|
||||
<path id='g0-120' d='M3.327522-3.008717C3.387298-3.267746 3.616438-4.184309 4.313823-4.184309C4.363636-4.184309 4.60274-4.184309 4.811955-4.054795C4.533001-4.004981 4.333748-3.755915 4.333748-3.516812C4.333748-3.35741 4.443337-3.16812 4.712329-3.16812C4.931507-3.16812 5.250311-3.347447 5.250311-3.745953C5.250311-4.26401 4.662516-4.403487 4.323786-4.403487C3.745953-4.403487 3.39726-3.875467 3.277709-3.646326C3.028643-4.303861 2.49066-4.403487 2.201743-4.403487C1.165629-4.403487 .597758-3.118306 .597758-2.86924C.597758-2.769614 .697385-2.769614 .71731-2.769614C.797011-2.769614 .826899-2.789539 .846824-2.879203C1.185554-3.935243 1.843088-4.184309 2.181818-4.184309C2.371108-4.184309 2.719801-4.094645 2.719801-3.516812C2.719801-3.20797 2.550436-2.540473 2.181818-1.145704C2.022416-.52802 1.673724-.109589 1.235367-.109589C1.175592-.109589 .946451-.109589 .737235-.239103C.986301-.288917 1.205479-.498132 1.205479-.777086C1.205479-1.046077 .986301-1.125778 .836862-1.125778C.537983-1.125778 .288917-.86675 .288917-.547945C.288917-.089664 .787049 .109589 1.225405 .109589C1.882939 .109589 2.241594-.587796 2.271482-.647572C2.391034-.278954 2.749689 .109589 3.347447 .109589C4.373599 .109589 4.941469-1.175592 4.941469-1.424658C4.941469-1.524284 4.851806-1.524284 4.821918-1.524284C4.732254-1.524284 4.712329-1.484433 4.692403-1.414695C4.363636-.348692 3.686177-.109589 3.367372-.109589C2.978829-.109589 2.819427-.428394 2.819427-.767123C2.819427-.986301 2.879203-1.205479 2.988792-1.643836L3.327522-3.008717Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.008582' y='-3.586587' xlink:href='#g0-120'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.8 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
x
|
||||
\end{align*}
|
||||
\end{document}
|
40
hs24/lineare_algebra/graphs/media/Tex/d48a14c954f6e93f.svg
Normal file
@@ -0,0 +1,40 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='72.794235pt' height='35.865854pt' viewBox='135.458431 -35.86585 72.794235 35.865854'>
|
||||
<defs>
|
||||
<path id='g0-97' d='M3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.787049 3.666252-.86675 3.775841-1.305106C3.88543-1.723537 3.905355-1.823163 3.995019-2.201743L4.353674-3.596513C4.423412-3.875467 4.423412-3.895392 4.423412-3.935243C4.423412-4.104608 4.303861-4.204234 4.134496-4.204234C3.895392-4.204234 3.745953-3.985056 3.716065-3.765878ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g0-98' d='M2.381071-6.804483C2.381071-6.814446 2.381071-6.914072 2.251557-6.914072C2.022416-6.914072 1.295143-6.834371 1.036115-6.814446C.956413-6.804483 .846824-6.794521 .846824-6.615193C.846824-6.495641 .936488-6.495641 1.085928-6.495641C1.564134-6.495641 1.58406-6.425903 1.58406-6.326276C1.58406-6.256538 1.494396-5.917808 1.444583-5.708593L.627646-2.460772C.508095-1.96264 .468244-1.803238 .468244-1.454545C.468244-.508095 .996264 .109589 1.733499 .109589C2.909091 .109589 4.134496-1.374844 4.134496-2.809465C4.134496-3.716065 3.606476-4.403487 2.809465-4.403487C2.351183-4.403487 1.942715-4.11457 1.643836-3.805729L2.381071-6.804483ZM1.444583-3.038605C1.504359-3.257783 1.504359-3.277709 1.594022-3.387298C2.082192-4.034869 2.530511-4.184309 2.789539-4.184309C3.148194-4.184309 3.417186-3.88543 3.417186-3.247821C3.417186-2.660025 3.088418-1.514321 2.909091-1.135741C2.580324-.468244 2.122042-.109589 1.733499-.109589C1.39477-.109589 1.066002-.37858 1.066002-1.115816C1.066002-1.305106 1.066002-1.494396 1.225405-2.122042L1.444583-3.038605Z'/>
|
||||
<path id='g0-99' d='M3.945205-3.785803C3.785803-3.785803 3.646326-3.785803 3.506849-3.646326C3.347447-3.496887 3.327522-3.327522 3.327522-3.257783C3.327522-3.01868 3.506849-2.909091 3.696139-2.909091C3.985056-2.909091 4.254047-3.148194 4.254047-3.5467C4.254047-4.034869 3.785803-4.403487 3.078456-4.403487C1.733499-4.403487 .408468-2.978829 .408468-1.574097C.408468-.67746 .986301 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.414695-.109589 1.145704-.597758 1.145704-1.195517C1.145704-1.603985 1.344956-2.570361 1.683686-3.188045C1.992528-3.755915 2.540473-4.184309 3.088418-4.184309C3.427148-4.184309 3.805729-4.054795 3.945205-3.785803Z'/>
|
||||
<path id='g0-100' d='M5.140722-6.804483C5.140722-6.814446 5.140722-6.914072 5.011208-6.914072C4.861768-6.914072 3.915318-6.824408 3.745953-6.804483C3.666252-6.794521 3.606476-6.744707 3.606476-6.615193C3.606476-6.495641 3.696139-6.495641 3.845579-6.495641C4.323786-6.495641 4.343711-6.425903 4.343711-6.326276L4.313823-6.127024L3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.806974 3.666252-.876712 3.706102-1.046077L5.140722-6.804483ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g0-101' d='M1.863014-2.30137C2.15193-2.30137 2.889166-2.321295 3.387298-2.530511C4.084682-2.82939 4.134496-3.417186 4.134496-3.556663C4.134496-3.995019 3.755915-4.403487 3.068493-4.403487C1.96264-4.403487 .458281-3.437111 .458281-1.693649C.458281-.67746 1.046077 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.265255-.109589 1.175592-.946451 1.175592-1.265255C1.175592-1.384807 1.185554-1.693649 1.334994-2.30137H1.863014ZM1.39477-2.520548C1.783313-4.034869 2.809465-4.184309 3.068493-4.184309C3.536737-4.184309 3.805729-3.895392 3.805729-3.556663C3.805729-2.520548 2.211706-2.520548 1.803238-2.520548H1.39477Z'/>
|
||||
<path id='g0-102' d='M3.656289-3.985056H4.513076C4.712329-3.985056 4.811955-3.985056 4.811955-4.184309C4.811955-4.293898 4.712329-4.293898 4.542964-4.293898H3.716065L3.92528-5.429639C3.965131-5.638854 4.104608-6.346202 4.164384-6.465753C4.254047-6.655044 4.423412-6.804483 4.632628-6.804483C4.672478-6.804483 4.931507-6.804483 5.120797-6.625156C4.682441-6.585305 4.582814-6.236613 4.582814-6.087173C4.582814-5.858032 4.762142-5.738481 4.951432-5.738481C5.210461-5.738481 5.499377-5.957659 5.499377-6.336239C5.499377-6.794521 5.041096-7.023661 4.632628-7.023661C4.293898-7.023661 3.666252-6.844334 3.367372-5.858032C3.307597-5.648817 3.277709-5.549191 3.038605-4.293898H2.351183C2.161893-4.293898 2.052304-4.293898 2.052304-4.104608C2.052304-3.985056 2.141968-3.985056 2.331258-3.985056H2.988792L2.241594-.049813C2.062267 .916563 1.892902 1.823163 1.374844 1.823163C1.334994 1.823163 1.085928 1.823163 .896638 1.643836C1.354919 1.613948 1.444583 1.255293 1.444583 1.105853C1.444583 .876712 1.265255 .757161 1.075965 .757161C.816936 .757161 .52802 .976339 .52802 1.354919C.52802 1.803238 .966376 2.042341 1.374844 2.042341C1.92279 2.042341 2.321295 1.454545 2.500623 1.075965C2.819427 .448319 3.048568-.757161 3.058531-.826899L3.656289-3.985056Z'/>
|
||||
<path id='g0-103' d='M4.692403-3.755915C4.702366-3.815691 4.722291-3.865504 4.722291-3.935243C4.722291-4.104608 4.60274-4.204234 4.433375-4.204234C4.333748-4.204234 4.064757-4.134496 4.024907-3.775841C3.845579-4.144458 3.496887-4.403487 3.098381-4.403487C1.96264-4.403487 .727273-3.008717 .727273-1.574097C.727273-.587796 1.334994 0 2.052304 0C2.6401 0 3.108344-.468244 3.20797-.577833L3.217933-.56787C3.008717 .318804 2.889166 .727273 2.889166 .747198C2.849315 .836862 2.510585 1.823163 1.454545 1.823163C1.265255 1.823163 .936488 1.8132 .657534 1.723537C.956413 1.633873 1.066002 1.374844 1.066002 1.205479C1.066002 1.046077 .956413 .856787 .687422 .856787C.468244 .856787 .14944 1.036115 .14944 1.43462C.14944 1.843088 .518057 2.042341 1.474471 2.042341C2.719801 2.042341 3.437111 1.265255 3.58655 .667497L4.692403-3.755915ZM3.39726-1.275218C3.337484-1.016189 3.108344-.767123 2.889166-.577833C2.67995-.398506 2.371108-.219178 2.082192-.219178C1.58406-.219178 1.43462-.737235 1.43462-1.135741C1.43462-1.613948 1.723537-2.789539 1.992528-3.297634C2.261519-3.785803 2.689913-4.184309 3.108344-4.184309C3.765878-4.184309 3.905355-3.377335 3.905355-3.327522S3.88543-3.217933 3.875467-3.178082L3.39726-1.275218Z'/>
|
||||
<path id='g0-104' d='M2.859278-6.804483C2.859278-6.814446 2.859278-6.914072 2.729763-6.914072C2.500623-6.914072 1.77335-6.834371 1.514321-6.814446C1.43462-6.804483 1.325031-6.794521 1.325031-6.615193C1.325031-6.495641 1.414695-6.495641 1.564134-6.495641C2.042341-6.495641 2.062267-6.425903 2.062267-6.326276L2.032379-6.127024L.587796-.388543C.547945-.249066 .547945-.229141 .547945-.169365C.547945 .059776 .747198 .109589 .836862 .109589C.996264 .109589 1.155666-.009963 1.205479-.14944L1.39477-.9066L1.613948-1.803238C1.673724-2.022416 1.733499-2.241594 1.783313-2.470735C1.803238-2.530511 1.882939-2.859278 1.892902-2.919054C1.92279-3.008717 2.231631-3.566625 2.570361-3.835616C2.789539-3.995019 3.098381-4.184309 3.526775-4.184309S4.064757-3.845579 4.064757-3.486924C4.064757-2.948941 3.686177-1.863014 3.447073-1.255293C3.367372-1.026152 3.317559-.9066 3.317559-.707347C3.317559-.239103 3.666252 .109589 4.134496 .109589C5.070984 .109589 5.439601-1.344956 5.439601-1.424658C5.439601-1.524284 5.349938-1.524284 5.32005-1.524284C5.220423-1.524284 5.220423-1.494396 5.17061-1.344956C5.021171-.816936 4.702366-.109589 4.154421-.109589C3.985056-.109589 3.915318-.209215 3.915318-.438356C3.915318-.687422 4.004981-.926526 4.094645-1.145704C4.254047-1.574097 4.702366-2.759651 4.702366-3.337484C4.702366-3.985056 4.303861-4.403487 3.556663-4.403487C2.929016-4.403487 2.450809-4.094645 2.082192-3.636364L2.859278-6.804483Z'/>
|
||||
<path id='g0-105' d='M2.82939-6.22665C2.82939-6.425903 2.689913-6.585305 2.460772-6.585305C2.191781-6.585305 1.92279-6.326276 1.92279-6.057285C1.92279-5.867995 2.062267-5.69863 2.30137-5.69863C2.530511-5.69863 2.82939-5.927771 2.82939-6.22665ZM2.072229-2.480697C2.191781-2.769614 2.191781-2.789539 2.291407-3.058531C2.371108-3.257783 2.420922-3.39726 2.420922-3.58655C2.420922-4.034869 2.102117-4.403487 1.603985-4.403487C.667497-4.403487 .288917-2.958904 .288917-2.86924C.288917-2.769614 .388543-2.769614 .408468-2.769614C.508095-2.769614 .518057-2.789539 .56787-2.948941C.836862-3.88543 1.235367-4.184309 1.574097-4.184309C1.653798-4.184309 1.823163-4.184309 1.823163-3.865504C1.823163-3.656289 1.753425-3.447073 1.713574-3.347447C1.633873-3.088418 1.185554-1.932752 1.026152-1.504359C.926526-1.24533 .797011-.916563 .797011-.707347C.797011-.239103 1.135741 .109589 1.613948 .109589C2.550436 .109589 2.919054-1.334994 2.919054-1.424658C2.919054-1.524284 2.82939-1.524284 2.799502-1.524284C2.699875-1.524284 2.699875-1.494396 2.650062-1.344956C2.470735-.71731 2.141968-.109589 1.633873-.109589C1.464508-.109589 1.39477-.209215 1.39477-.438356C1.39477-.687422 1.454545-.826899 1.683686-1.43462L2.072229-2.480697Z'/>
|
||||
<path id='g1-50' d='M3.247821 17.534247H3.935243V.298879H6.56538V-.388543H3.247821V17.534247Z'/>
|
||||
<path id='g1-51' d='M2.699875 17.534247H3.387298V-.388543H.069738V.298879H2.699875V17.534247Z'/>
|
||||
<path id='g1-52' d='M3.247821 17.524284H6.56538V16.836862H3.935243V-.398506H3.247821V17.524284Z'/>
|
||||
<path id='g1-53' d='M2.699875 16.836862H.069738V17.524284H3.387298V-.398506H2.699875V16.836862Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='135.458431' y='-35.467354' xlink:href='#g1-50'/>
|
||||
<use x='135.458431' y='-17.534435' xlink:href='#g1-52'/>
|
||||
<use x='142.100211' y='-27.49709' xlink:href='#g0-97'/>
|
||||
<use x='158.061216' y='-27.49709' xlink:href='#g0-98'/>
|
||||
<use x='173.850973' y='-27.49709' xlink:href='#g0-99'/>
|
||||
<use x='142.140572' y='-15.541922' xlink:href='#g0-100'/>
|
||||
<use x='157.879585' y='-15.541922' xlink:href='#g0-101'/>
|
||||
<use x='173.031688' y='-15.541922' xlink:href='#g0-102'/>
|
||||
<use x='142.178637' y='-3.586754' xlink:href='#g0-103'/>
|
||||
<use x='157.328992' y='-3.586754' xlink:href='#g0-104'/>
|
||||
<use x='174.290533' y='-3.586754' xlink:href='#g0-105'/>
|
||||
<use x='178.981636' y='-35.467354' xlink:href='#g1-51'/>
|
||||
<use x='178.981636' y='-17.534435' xlink:href='#g1-53'/>
|
||||
<use x='187.283815' y='-27.49709' xlink:href='#g0-97'/>
|
||||
<use x='203.24482' y='-27.49709' xlink:href='#g0-98'/>
|
||||
<use x='187.324176' y='-15.541922' xlink:href='#g0-100'/>
|
||||
<use x='203.06319' y='-15.541922' xlink:href='#g0-101'/>
|
||||
<use x='187.362241' y='-3.586754' xlink:href='#g0-103'/>
|
||||
<use x='202.512596' y='-3.586754' xlink:href='#g0-104'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 12 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i\\ \end{bmatrix} \begin{matrix} a & b\\ d & e\\ g & h\\ \end{matrix}
|
||||
\end{align*}
|
||||
\end{document}
|
10
hs24/lineare_algebra/graphs/media/Tex/d994363fa45e89a1.svg
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='4.981339pt' height='6.420368pt' viewBox='169.364866 -10.006955 4.981339 6.420368'>
|
||||
<defs>
|
||||
<path id='g0-57' d='M3.656289-3.16812V-2.849315C3.656289-.518057 2.620174-.059776 2.042341-.059776C1.872976-.059776 1.334994-.079701 1.066002-.418431C1.504359-.418431 1.58406-.707347 1.58406-.876712C1.58406-1.185554 1.344956-1.334994 1.125778-1.334994C.966376-1.334994 .667497-1.24533 .667497-.856787C.667497-.18929 1.205479 .219178 2.052304 .219178C3.337484 .219178 4.552927-1.135741 4.552927-3.277709C4.552927-5.957659 3.407223-6.635118 2.520548-6.635118C1.972603-6.635118 1.484433-6.455791 1.05604-6.007472C.647572-5.559153 .418431-5.140722 .418431-4.393524C.418431-3.148194 1.295143-2.171856 2.410959-2.171856C3.01868-2.171856 3.427148-2.590286 3.656289-3.16812ZM2.420922-2.400996C2.261519-2.400996 1.803238-2.400996 1.494396-3.028643C1.315068-3.39726 1.315068-3.895392 1.315068-4.383562C1.315068-4.921544 1.315068-5.389788 1.524284-5.758406C1.793275-6.256538 2.171856-6.386052 2.520548-6.386052C2.978829-6.386052 3.307597-6.047323 3.476961-5.599004C3.596513-5.280199 3.636364-4.652553 3.636364-4.194271C3.636364-3.367372 3.297634-2.400996 2.420922-2.400996Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='169.364866' y='-3.586587' xlink:href='#g0-57'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.4 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
9
|
||||
\end{align*}
|
||||
\end{document}
|
21
hs24/lineare_algebra/graphs/media/Tex/eeaaedd0cf3613fe.svg
Normal file
@@ -0,0 +1,21 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='40.376363pt' height='23.910579pt' viewBox='151.667362 -23.910576 40.376363 23.910579'>
|
||||
<defs>
|
||||
<path id='g1-49' d='M2.929016-6.37609C2.929016-6.615193 2.929016-6.635118 2.699875-6.635118C2.082192-5.997509 1.205479-5.997509 .886675-5.997509V-5.688667C1.085928-5.688667 1.673724-5.688667 2.191781-5.947696V-.787049C2.191781-.428394 2.161893-.308842 1.265255-.308842H.946451V0C1.295143-.029888 2.161893-.029888 2.560399-.029888S3.825654-.029888 4.174346 0V-.308842H3.855542C2.958904-.308842 2.929016-.418431 2.929016-.787049V-6.37609Z'/>
|
||||
<path id='g1-50' d='M1.265255-.767123L2.321295-1.793275C3.875467-3.16812 4.473225-3.706102 4.473225-4.702366C4.473225-5.838107 3.576588-6.635118 2.361146-6.635118C1.235367-6.635118 .498132-5.718555 .498132-4.83188C.498132-4.273973 .996264-4.273973 1.026152-4.273973C1.195517-4.273973 1.544209-4.393524 1.544209-4.801993C1.544209-5.061021 1.364882-5.32005 1.016189-5.32005C.936488-5.32005 .916563-5.32005 .886675-5.310087C1.115816-5.957659 1.653798-6.326276 2.231631-6.326276C3.138232-6.326276 3.566625-5.519303 3.566625-4.702366C3.566625-3.905355 3.068493-3.118306 2.520548-2.500623L.607721-.368618C.498132-.259029 .498132-.239103 .498132 0H4.194271L4.473225-1.733499H4.224159C4.174346-1.43462 4.104608-.996264 4.004981-.846824C3.935243-.767123 3.277709-.767123 3.058531-.767123H1.265255Z'/>
|
||||
<path id='g1-52' d='M2.929016-1.643836V-.777086C2.929016-.418431 2.909091-.308842 2.171856-.308842H1.96264V0C2.371108-.029888 2.889166-.029888 3.307597-.029888S4.254047-.029888 4.662516 0V-.308842H4.4533C3.716065-.308842 3.696139-.418431 3.696139-.777086V-1.643836H4.692403V-1.952677H3.696139V-6.485679C3.696139-6.684932 3.696139-6.744707 3.536737-6.744707C3.447073-6.744707 3.417186-6.744707 3.337484-6.625156L.278954-1.952677V-1.643836H2.929016ZM2.988792-1.952677H.557908L2.988792-5.668742V-1.952677Z'/>
|
||||
<path id='g2-20' d='M2.49066 23.501868H5.110834V22.953923H3.038605V.14944H5.110834V-.398506H2.49066V23.501868Z'/>
|
||||
<path id='g2-21' d='M2.211706 22.953923H.139477V23.501868H2.759651V-.398506H.139477V.14944H2.211706V22.953923Z'/>
|
||||
<path id='g0-67' d='M7.631382-6.665006C7.631382-6.854296 7.631382-6.94396 7.452055-6.94396C7.362391-6.94396 7.342466-6.924035 7.262765-6.854296L6.60523-6.266501C5.987547-6.764633 5.32005-6.94396 4.64259-6.94396C2.161893-6.94396 .637609-5.459527 .637609-3.417186S2.161893 .109589 4.64259 .109589C6.505604 .109589 7.631382-1.115816 7.631382-2.261519C7.631382-2.460772 7.561644-2.470735 7.392279-2.470735C7.262765-2.470735 7.173101-2.470735 7.163138-2.30137C7.0934-.966376 5.88792-.358655 4.881694-.358655C4.104608-.358655 3.267746-.597758 2.749689-1.205479C2.281445-1.77335 2.161893-2.520548 2.161893-3.417186C2.161893-3.975093 2.191781-5.051059 2.819427-5.708593C3.466999-6.366127 4.333748-6.475716 4.851806-6.475716C5.927771-6.475716 6.874222-5.718555 7.0934-4.4533C7.123288-4.26401 7.13325-4.244085 7.362391-4.244085C7.62142-4.244085 7.631382-4.26401 7.631382-4.523039V-6.665006Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='151.667362' y='-9.46463' xlink:href='#g0-67'/>
|
||||
<use x='161.602244' y='-23.51208' xlink:href='#g2-20'/>
|
||||
<use x='166.860327' y='-15.541877' xlink:href='#g1-52'/>
|
||||
<use x='181.804303' y='-15.541877' xlink:href='#g1-50'/>
|
||||
<use x='166.860327' y='-3.586709' xlink:href='#g1-50'/>
|
||||
<use x='181.804303' y='-3.586709' xlink:href='#g1-49'/>
|
||||
<use x='186.785638' y='-23.51208' xlink:href='#g2-21'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 3.5 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\mathbf{C} \begin{bmatrix} 4 & 2\\ 2 & 1\end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
47
hs24/lineare_algebra/graphs/media/Tex/f510aac2d8d25092.svg
Normal file
@@ -0,0 +1,47 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!-- This file was generated by dvisvgm 3.2.2 -->
|
||||
<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='64.682294pt' height='47.821144pt' viewBox='139.514388 -47.82114 64.682294 47.821144'>
|
||||
<defs>
|
||||
<path id='g1-48' d='M4.582814-3.188045C4.582814-3.985056 4.533001-4.782067 4.184309-5.519303C3.726027-6.475716 2.909091-6.635118 2.49066-6.635118C1.892902-6.635118 1.165629-6.37609 .757161-5.449564C.438356-4.762142 .388543-3.985056 .388543-3.188045C.388543-2.440847 .428394-1.544209 .836862-.787049C1.265255 .019925 1.992528 .219178 2.480697 .219178C3.01868 .219178 3.775841 .009963 4.214197-.936488C4.533001-1.62391 4.582814-2.400996 4.582814-3.188045ZM2.480697 0C2.092154 0 1.504359-.249066 1.325031-1.205479C1.215442-1.803238 1.215442-2.719801 1.215442-3.307597C1.215442-3.945205 1.215442-4.60274 1.295143-5.140722C1.484433-6.326276 2.231631-6.41594 2.480697-6.41594C2.809465-6.41594 3.466999-6.236613 3.656289-5.250311C3.755915-4.692403 3.755915-3.935243 3.755915-3.307597C3.755915-2.560399 3.755915-1.882939 3.646326-1.24533C3.496887-.298879 2.929016 0 2.480697 0Z'/>
|
||||
<path id='g0-97' d='M3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.787049 3.666252-.86675 3.775841-1.305106C3.88543-1.723537 3.905355-1.823163 3.995019-2.201743L4.353674-3.596513C4.423412-3.875467 4.423412-3.895392 4.423412-3.935243C4.423412-4.104608 4.303861-4.204234 4.134496-4.204234C3.895392-4.204234 3.745953-3.985056 3.716065-3.765878ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g0-98' d='M2.381071-6.804483C2.381071-6.814446 2.381071-6.914072 2.251557-6.914072C2.022416-6.914072 1.295143-6.834371 1.036115-6.814446C.956413-6.804483 .846824-6.794521 .846824-6.615193C.846824-6.495641 .936488-6.495641 1.085928-6.495641C1.564134-6.495641 1.58406-6.425903 1.58406-6.326276C1.58406-6.256538 1.494396-5.917808 1.444583-5.708593L.627646-2.460772C.508095-1.96264 .468244-1.803238 .468244-1.454545C.468244-.508095 .996264 .109589 1.733499 .109589C2.909091 .109589 4.134496-1.374844 4.134496-2.809465C4.134496-3.716065 3.606476-4.403487 2.809465-4.403487C2.351183-4.403487 1.942715-4.11457 1.643836-3.805729L2.381071-6.804483ZM1.444583-3.038605C1.504359-3.257783 1.504359-3.277709 1.594022-3.387298C2.082192-4.034869 2.530511-4.184309 2.789539-4.184309C3.148194-4.184309 3.417186-3.88543 3.417186-3.247821C3.417186-2.660025 3.088418-1.514321 2.909091-1.135741C2.580324-.468244 2.122042-.109589 1.733499-.109589C1.39477-.109589 1.066002-.37858 1.066002-1.115816C1.066002-1.305106 1.066002-1.494396 1.225405-2.122042L1.444583-3.038605Z'/>
|
||||
<path id='g0-99' d='M3.945205-3.785803C3.785803-3.785803 3.646326-3.785803 3.506849-3.646326C3.347447-3.496887 3.327522-3.327522 3.327522-3.257783C3.327522-3.01868 3.506849-2.909091 3.696139-2.909091C3.985056-2.909091 4.254047-3.148194 4.254047-3.5467C4.254047-4.034869 3.785803-4.403487 3.078456-4.403487C1.733499-4.403487 .408468-2.978829 .408468-1.574097C.408468-.67746 .986301 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.414695-.109589 1.145704-.597758 1.145704-1.195517C1.145704-1.603985 1.344956-2.570361 1.683686-3.188045C1.992528-3.755915 2.540473-4.184309 3.088418-4.184309C3.427148-4.184309 3.805729-4.054795 3.945205-3.785803Z'/>
|
||||
<path id='g0-100' d='M5.140722-6.804483C5.140722-6.814446 5.140722-6.914072 5.011208-6.914072C4.861768-6.914072 3.915318-6.824408 3.745953-6.804483C3.666252-6.794521 3.606476-6.744707 3.606476-6.615193C3.606476-6.495641 3.696139-6.495641 3.845579-6.495641C4.323786-6.495641 4.343711-6.425903 4.343711-6.326276L4.313823-6.127024L3.716065-3.765878C3.536737-4.134496 3.247821-4.403487 2.799502-4.403487C1.633873-4.403487 .398506-2.938979 .398506-1.484433C.398506-.547945 .946451 .109589 1.723537 .109589C1.92279 .109589 2.420922 .069738 3.01868-.637609C3.098381-.219178 3.447073 .109589 3.92528 .109589C4.273973 .109589 4.503113-.119552 4.662516-.438356C4.83188-.797011 4.961395-1.404732 4.961395-1.424658C4.961395-1.524284 4.871731-1.524284 4.841843-1.524284C4.742217-1.524284 4.732254-1.484433 4.702366-1.344956C4.533001-.697385 4.353674-.109589 3.945205-.109589C3.676214-.109589 3.646326-.368618 3.646326-.56787C3.646326-.806974 3.666252-.876712 3.706102-1.046077L5.140722-6.804483ZM3.068493-1.185554C3.01868-1.006227 3.01868-.986301 2.86924-.816936C2.430884-.268991 2.022416-.109589 1.743462-.109589C1.24533-.109589 1.105853-.657534 1.105853-1.046077C1.105853-1.544209 1.424658-2.769614 1.653798-3.227895C1.96264-3.815691 2.410959-4.184309 2.809465-4.184309C3.457036-4.184309 3.596513-3.367372 3.596513-3.307597S3.576588-3.188045 3.566625-3.138232L3.068493-1.185554Z'/>
|
||||
<path id='g0-101' d='M1.863014-2.30137C2.15193-2.30137 2.889166-2.321295 3.387298-2.530511C4.084682-2.82939 4.134496-3.417186 4.134496-3.556663C4.134496-3.995019 3.755915-4.403487 3.068493-4.403487C1.96264-4.403487 .458281-3.437111 .458281-1.693649C.458281-.67746 1.046077 .109589 2.022416 .109589C3.447073 .109589 4.283935-.946451 4.283935-1.066002C4.283935-1.125778 4.224159-1.195517 4.164384-1.195517C4.11457-1.195517 4.094645-1.175592 4.034869-1.09589C3.247821-.109589 2.161893-.109589 2.042341-.109589C1.265255-.109589 1.175592-.946451 1.175592-1.265255C1.175592-1.384807 1.185554-1.693649 1.334994-2.30137H1.863014ZM1.39477-2.520548C1.783313-4.034869 2.809465-4.184309 3.068493-4.184309C3.536737-4.184309 3.805729-3.895392 3.805729-3.556663C3.805729-2.520548 2.211706-2.520548 1.803238-2.520548H1.39477Z'/>
|
||||
<path id='g0-102' d='M3.656289-3.985056H4.513076C4.712329-3.985056 4.811955-3.985056 4.811955-4.184309C4.811955-4.293898 4.712329-4.293898 4.542964-4.293898H3.716065L3.92528-5.429639C3.965131-5.638854 4.104608-6.346202 4.164384-6.465753C4.254047-6.655044 4.423412-6.804483 4.632628-6.804483C4.672478-6.804483 4.931507-6.804483 5.120797-6.625156C4.682441-6.585305 4.582814-6.236613 4.582814-6.087173C4.582814-5.858032 4.762142-5.738481 4.951432-5.738481C5.210461-5.738481 5.499377-5.957659 5.499377-6.336239C5.499377-6.794521 5.041096-7.023661 4.632628-7.023661C4.293898-7.023661 3.666252-6.844334 3.367372-5.858032C3.307597-5.648817 3.277709-5.549191 3.038605-4.293898H2.351183C2.161893-4.293898 2.052304-4.293898 2.052304-4.104608C2.052304-3.985056 2.141968-3.985056 2.331258-3.985056H2.988792L2.241594-.049813C2.062267 .916563 1.892902 1.823163 1.374844 1.823163C1.334994 1.823163 1.085928 1.823163 .896638 1.643836C1.354919 1.613948 1.444583 1.255293 1.444583 1.105853C1.444583 .876712 1.265255 .757161 1.075965 .757161C.816936 .757161 .52802 .976339 .52802 1.354919C.52802 1.803238 .966376 2.042341 1.374844 2.042341C1.92279 2.042341 2.321295 1.454545 2.500623 1.075965C2.819427 .448319 3.048568-.757161 3.058531-.826899L3.656289-3.985056Z'/>
|
||||
<path id='g0-103' d='M4.692403-3.755915C4.702366-3.815691 4.722291-3.865504 4.722291-3.935243C4.722291-4.104608 4.60274-4.204234 4.433375-4.204234C4.333748-4.204234 4.064757-4.134496 4.024907-3.775841C3.845579-4.144458 3.496887-4.403487 3.098381-4.403487C1.96264-4.403487 .727273-3.008717 .727273-1.574097C.727273-.587796 1.334994 0 2.052304 0C2.6401 0 3.108344-.468244 3.20797-.577833L3.217933-.56787C3.008717 .318804 2.889166 .727273 2.889166 .747198C2.849315 .836862 2.510585 1.823163 1.454545 1.823163C1.265255 1.823163 .936488 1.8132 .657534 1.723537C.956413 1.633873 1.066002 1.374844 1.066002 1.205479C1.066002 1.046077 .956413 .856787 .687422 .856787C.468244 .856787 .14944 1.036115 .14944 1.43462C.14944 1.843088 .518057 2.042341 1.474471 2.042341C2.719801 2.042341 3.437111 1.265255 3.58655 .667497L4.692403-3.755915ZM3.39726-1.275218C3.337484-1.016189 3.108344-.767123 2.889166-.577833C2.67995-.398506 2.371108-.219178 2.082192-.219178C1.58406-.219178 1.43462-.737235 1.43462-1.135741C1.43462-1.613948 1.723537-2.789539 1.992528-3.297634C2.261519-3.785803 2.689913-4.184309 3.108344-4.184309C3.765878-4.184309 3.905355-3.377335 3.905355-3.327522S3.88543-3.217933 3.875467-3.178082L3.39726-1.275218Z'/>
|
||||
<path id='g0-104' d='M2.859278-6.804483C2.859278-6.814446 2.859278-6.914072 2.729763-6.914072C2.500623-6.914072 1.77335-6.834371 1.514321-6.814446C1.43462-6.804483 1.325031-6.794521 1.325031-6.615193C1.325031-6.495641 1.414695-6.495641 1.564134-6.495641C2.042341-6.495641 2.062267-6.425903 2.062267-6.326276L2.032379-6.127024L.587796-.388543C.547945-.249066 .547945-.229141 .547945-.169365C.547945 .059776 .747198 .109589 .836862 .109589C.996264 .109589 1.155666-.009963 1.205479-.14944L1.39477-.9066L1.613948-1.803238C1.673724-2.022416 1.733499-2.241594 1.783313-2.470735C1.803238-2.530511 1.882939-2.859278 1.892902-2.919054C1.92279-3.008717 2.231631-3.566625 2.570361-3.835616C2.789539-3.995019 3.098381-4.184309 3.526775-4.184309S4.064757-3.845579 4.064757-3.486924C4.064757-2.948941 3.686177-1.863014 3.447073-1.255293C3.367372-1.026152 3.317559-.9066 3.317559-.707347C3.317559-.239103 3.666252 .109589 4.134496 .109589C5.070984 .109589 5.439601-1.344956 5.439601-1.424658C5.439601-1.524284 5.349938-1.524284 5.32005-1.524284C5.220423-1.524284 5.220423-1.494396 5.17061-1.344956C5.021171-.816936 4.702366-.109589 4.154421-.109589C3.985056-.109589 3.915318-.209215 3.915318-.438356C3.915318-.687422 4.004981-.926526 4.094645-1.145704C4.254047-1.574097 4.702366-2.759651 4.702366-3.337484C4.702366-3.985056 4.303861-4.403487 3.556663-4.403487C2.929016-4.403487 2.450809-4.094645 2.082192-3.636364L2.859278-6.804483Z'/>
|
||||
<path id='g2-50' d='M3.247821 17.534247H3.935243V.298879H6.56538V-.388543H3.247821V17.534247Z'/>
|
||||
<path id='g2-51' d='M2.699875 17.534247H3.387298V-.388543H.069738V.298879H2.699875V17.534247Z'/>
|
||||
<path id='g2-52' d='M3.247821 17.524284H6.56538V16.836862H3.935243V-.398506H3.247821V17.524284Z'/>
|
||||
<path id='g2-53' d='M2.699875 16.836862H.069738V17.524284H3.387298V-.398506H2.699875V16.836862Z'/>
|
||||
<path id='g2-54' d='M3.247821 5.987547H3.935243V-.009963H3.247821V5.987547Z'/>
|
||||
<path id='g2-55' d='M2.699875 5.987547H3.387298V-.009963H2.699875V5.987547Z'/>
|
||||
</defs>
|
||||
<g id='page1'>
|
||||
<use x='139.514388' y='-47.422644' xlink:href='#g2-50'/>
|
||||
<use x='139.514388' y='-29.888209' xlink:href='#g2-54'/>
|
||||
<use x='139.514388' y='-23.910564' xlink:href='#g2-54'/>
|
||||
<use x='139.514388' y='-17.534435' xlink:href='#g2-52'/>
|
||||
<use x='146.156169' y='-39.452319' xlink:href='#g0-97'/>
|
||||
<use x='161.839847' y='-39.452319' xlink:href='#g0-98'/>
|
||||
<use x='176.596993' y='-39.452319' xlink:href='#g1-48'/>
|
||||
<use x='192.089266' y='-39.452319' xlink:href='#g1-48'/>
|
||||
<use x='146.63355' y='-27.497151' xlink:href='#g0-99'/>
|
||||
<use x='161.384949' y='-27.497151' xlink:href='#g0-100'/>
|
||||
<use x='176.596993' y='-27.497151' xlink:href='#g1-48'/>
|
||||
<use x='192.089266' y='-27.497151' xlink:href='#g1-48'/>
|
||||
<use x='146.298579' y='-15.541983' xlink:href='#g1-48'/>
|
||||
<use x='161.486999' y='-15.541983' xlink:href='#g1-48'/>
|
||||
<use x='176.768226' y='-15.541983' xlink:href='#g0-101'/>
|
||||
<use x='191.604952' y='-15.541983' xlink:href='#g0-102'/>
|
||||
<use x='146.298579' y='-3.586815' xlink:href='#g1-48'/>
|
||||
<use x='161.486999' y='-3.586815' xlink:href='#g1-48'/>
|
||||
<use x='176.533009' y='-3.586815' xlink:href='#g0-103'/>
|
||||
<use x='191.709906' y='-3.586815' xlink:href='#g0-104'/>
|
||||
<use x='197.5549' y='-47.422644' xlink:href='#g2-51'/>
|
||||
<use x='197.5549' y='-29.888209' xlink:href='#g2-55'/>
|
||||
<use x='197.5549' y='-23.910564' xlink:href='#g2-55'/>
|
||||
<use x='197.5549' y='-17.534435' xlink:href='#g2-53'/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 12 KiB |
@@ -0,0 +1,9 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\begin{bmatrix} a & b & 0 & 0\\ c & d & 0 & 0 \\ 0 & 0 & e & f \\ 0 & 0 & g & h \end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 31 KiB |
13
hs24/lineare_algebra/graphs/media/texts/6d7a42cef7eb19d5.svg
Normal file
@@ -0,0 +1,13 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="1920" height="1080" viewBox="0 0 1920 1080">
|
||||
<defs>
|
||||
<g>
|
||||
<g id="glyph-0-0">
|
||||
<path d="M 5.398438 -5.984375 L 5.398438 -5.828125 L 1.785156 -0.410156 L 3.625 -0.410156 C 4.265625 -0.410156 4.667969 -0.492188 4.835938 -0.652344 C 5.007812 -0.816406 5.171875 -1.214844 5.339844 -1.847656 L 5.566406 -1.804688 L 5.382812 0 L 0.339844 0 L 0.339844 -0.148438 L 3.898438 -5.585938 L 2.15625 -5.585938 C 1.6875 -5.585938 1.378906 -5.503906 1.238281 -5.34375 C 1.09375 -5.183594 0.992188 -4.871094 0.9375 -4.40625 L 0.710938 -4.40625 L 0.734375 -5.984375 Z "/>
|
||||
</g>
|
||||
</g>
|
||||
</defs>
|
||||
<g fill="rgb(100%, 100%, 100%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-0" x="30" y="30"/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 804 B |
13
hs24/lineare_algebra/graphs/media/texts/73f6454b344c5730.svg
Normal file
@@ -0,0 +1,13 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="1920" height="1080" viewBox="0 0 1920 1080">
|
||||
<defs>
|
||||
<g>
|
||||
<g id="glyph-0-0">
|
||||
<path d="M 3.085938 -5.984375 L 3.085938 -5.800781 C 2.921875 -5.796875 2.78125 -5.773438 2.664062 -5.730469 C 2.550781 -5.691406 2.492188 -5.605469 2.492188 -5.476562 C 2.492188 -5.394531 2.609375 -5.160156 2.839844 -4.777344 C 2.960938 -4.578125 3.113281 -4.332031 3.300781 -4.042969 C 3.558594 -4.394531 3.746094 -4.671875 3.875 -4.871094 C 4.085938 -5.191406 4.191406 -5.398438 4.191406 -5.496094 C 4.191406 -5.609375 4.148438 -5.683594 4.054688 -5.722656 C 3.964844 -5.761719 3.835938 -5.789062 3.671875 -5.800781 L 3.671875 -5.984375 L 5.769531 -5.984375 L 5.769531 -5.800781 C 5.546875 -5.785156 5.339844 -5.722656 5.148438 -5.621094 C 4.957031 -5.519531 4.804688 -5.382812 4.6875 -5.214844 L 3.574219 -3.605469 L 5.292969 -1.003906 C 5.515625 -0.664062 5.703125 -0.445312 5.855469 -0.34375 C 6.011719 -0.246094 6.1875 -0.191406 6.386719 -0.183594 L 6.386719 0 L 3.699219 0 L 3.699219 -0.183594 L 3.886719 -0.195312 C 3.988281 -0.203125 4.070312 -0.234375 4.136719 -0.285156 C 4.203125 -0.339844 4.238281 -0.402344 4.238281 -0.480469 C 4.238281 -0.5625 4.15625 -0.746094 3.992188 -1.027344 C 3.914062 -1.167969 3.796875 -1.355469 3.640625 -1.59375 C 3.566406 -1.710938 3.457031 -1.875 3.308594 -2.082031 C 3.164062 -2.292969 3.042969 -2.46875 2.941406 -2.617188 L 1.894531 -0.984375 C 1.769531 -0.789062 1.691406 -0.65625 1.660156 -0.59375 C 1.628906 -0.527344 1.613281 -0.472656 1.613281 -0.429688 C 1.613281 -0.347656 1.648438 -0.292969 1.714844 -0.265625 C 1.78125 -0.242188 1.929688 -0.210938 2.15625 -0.183594 L 2.15625 0 L 0.226562 0 L 0.226562 -0.183594 C 0.460938 -0.230469 0.636719 -0.289062 0.75 -0.363281 C 0.863281 -0.4375 1.011719 -0.609375 1.199219 -0.878906 L 2.714844 -3.085938 L 1.464844 -4.980469 C 1.214844 -5.359375 1.039062 -5.582031 0.945312 -5.652344 C 0.847656 -5.722656 0.640625 -5.769531 0.320312 -5.800781 L 0.320312 -5.984375 Z "/>
|
||||
</g>
|
||||
</g>
|
||||
</defs>
|
||||
<g fill="rgb(100%, 100%, 100%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-0" x="30" y="30"/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 2.1 KiB |
13
hs24/lineare_algebra/graphs/media/texts/fbcb70151ca342d4.svg
Normal file
@@ -0,0 +1,13 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="1920" height="1080" viewBox="0 0 1920 1080">
|
||||
<defs>
|
||||
<g>
|
||||
<g id="glyph-0-0">
|
||||
<path d="M 0.183594 -5.984375 L 2.929688 -5.984375 L 2.929688 -5.78125 C 2.710938 -5.777344 2.550781 -5.757812 2.449219 -5.722656 C 2.25 -5.667969 2.148438 -5.554688 2.148438 -5.390625 C 2.148438 -5.328125 2.160156 -5.269531 2.179688 -5.203125 C 2.203125 -5.140625 2.242188 -5.046875 2.296875 -4.921875 L 3.820312 -1.542969 L 5.046875 -4.949219 C 5.058594 -4.984375 5.078125 -5.0625 5.105469 -5.183594 C 5.136719 -5.304688 5.148438 -5.386719 5.148438 -5.429688 C 5.148438 -5.542969 5.109375 -5.625 5.03125 -5.675781 C 4.953125 -5.730469 4.855469 -5.757812 4.734375 -5.769531 L 4.53125 -5.78125 L 4.53125 -5.984375 L 6.320312 -5.984375 L 6.320312 -5.78125 C 6.144531 -5.757812 6.011719 -5.699219 5.921875 -5.597656 C 5.832031 -5.5 5.753906 -5.359375 5.691406 -5.183594 L 3.640625 0.246094 C 3.285156 1.183594 2.941406 1.863281 2.617188 2.285156 C 2.292969 2.707031 1.878906 2.917969 1.378906 2.917969 C 1.136719 2.917969 0.910156 2.855469 0.695312 2.734375 C 0.484375 2.613281 0.378906 2.417969 0.378906 2.15625 C 0.378906 1.980469 0.441406 1.839844 0.570312 1.726562 C 0.699219 1.617188 0.859375 1.5625 1.054688 1.5625 C 1.167969 1.5625 1.335938 1.605469 1.558594 1.6875 C 1.78125 1.769531 1.941406 1.808594 2.039062 1.808594 C 2.28125 1.808594 2.535156 1.527344 2.804688 0.964844 C 3.074219 0.398438 3.210938 0.0234375 3.210938 -0.167969 C 3.210938 -0.207031 3.203125 -0.257812 3.191406 -0.3125 C 3.175781 -0.367188 3.160156 -0.417969 3.144531 -0.460938 L 1.0625 -4.96875 C 0.914062 -5.289062 0.785156 -5.5 0.671875 -5.601562 C 0.5625 -5.703125 0.398438 -5.769531 0.183594 -5.800781 Z "/>
|
||||
</g>
|
||||
</g>
|
||||
</defs>
|
||||
<g fill="rgb(100%, 100%, 100%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-0" x="30" y="30"/>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.9 KiB |
178
hs24/lineare_algebra/letterfonts.tex
Normal file
@@ -0,0 +1,178 @@
|
||||
% Things Lie
|
||||
\newcommand{\kb}{\mathfrak b}
|
||||
\newcommand{\kg}{\mathfrak g}
|
||||
\newcommand{\kh}{\mathfrak h}
|
||||
\newcommand{\kn}{\mathfrak n}
|
||||
\newcommand{\ku}{\mathfrak u}
|
||||
\newcommand{\kz}{\mathfrak z}
|
||||
\DeclareMathOperator{\Ext}{Ext} % Ext functor
|
||||
\DeclareMathOperator{\Tor}{Tor} % Tor functor
|
||||
\newcommand{\gl}{\opname{\mathfrak{gl}}} % frak gl group
|
||||
\renewcommand{\sl}{\opname{\mathfrak{sl}}} % frak sl group chktex 6
|
||||
|
||||
% More script letters etc.
|
||||
\newcommand{\SA}{\mathcal A}
|
||||
\newcommand{\SB}{\mathcal B}
|
||||
\newcommand{\SC}{\mathcal C}
|
||||
\newcommand{\SF}{\mathcal F}
|
||||
\newcommand{\SG}{\mathcal G}
|
||||
\newcommand{\SH}{\mathcal H}
|
||||
\newcommand{\OO}{\mathcal O}
|
||||
|
||||
\newcommand{\SCA}{\mathscr A}
|
||||
\newcommand{\SCB}{\mathscr B}
|
||||
\newcommand{\SCC}{\mathscr C}
|
||||
\newcommand{\SCD}{\mathscr D}
|
||||
\newcommand{\SCE}{\mathscr E}
|
||||
\newcommand{\SCF}{\mathscr F}
|
||||
\newcommand{\SCG}{\mathscr G}
|
||||
\newcommand{\SCH}{\mathscr H}
|
||||
|
||||
% Mathfrak primes
|
||||
\newcommand{\km}{\mathfrak m}
|
||||
\newcommand{\kp}{\mathfrak p}
|
||||
\newcommand{\kq}{\mathfrak q}
|
||||
|
||||
% number sets
|
||||
\newcommand{\RR}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{R}}{\mathbb{R}^{#1}}}}
|
||||
\newcommand{\NN}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{N}}{\mathbb{N}^{#1}}}}
|
||||
\newcommand{\ZZ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Z}}{\mathbb{Z}^{#1}}}}
|
||||
\newcommand{\QQ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Q}}{\mathbb{Q}^{#1}}}}
|
||||
\newcommand{\CC}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{C}}{\mathbb{C}^{#1}}}}
|
||||
\newcommand{\PP}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{P}}{\mathbb{P}^{#1}}}}
|
||||
\newcommand{\HH}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{H}}{\mathbb{H}^{#1}}}}
|
||||
\newcommand{\FF}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{F}}{\mathbb{F}^{#1}}}}
|
||||
% expected value
|
||||
\newcommand{\EE}{\ensuremath{\mathbb{E}}}
|
||||
\newcommand{\charin}{\text{ char }}
|
||||
\DeclareMathOperator{\sign}{sign}
|
||||
\DeclareMathOperator{\Aut}{Aut}
|
||||
\DeclareMathOperator{\Inn}{Inn}
|
||||
\DeclareMathOperator{\Syl}{Syl}
|
||||
\DeclareMathOperator{\Gal}{Gal}
|
||||
\DeclareMathOperator{\GL}{GL} % General linear group
|
||||
\DeclareMathOperator{\SL}{SL} % Special linear group
|
||||
|
||||
%---------------------------------------
|
||||
% BlackBoard Math Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\bbA}{\mathbb{A}} \newcommand{\bbB}{\mathbb{B}}
|
||||
\newcommand{\bbC}{\mathbb{C}} \newcommand{\bbD}{\mathbb{D}}
|
||||
\newcommand{\bbE}{\mathbb{E}} \newcommand{\bbF}{\mathbb{F}}
|
||||
\newcommand{\bbG}{\mathbb{G}} \newcommand{\bbH}{\mathbb{H}}
|
||||
\newcommand{\bbI}{\mathbb{I}} \newcommand{\bbJ}{\mathbb{J}}
|
||||
\newcommand{\bbK}{\mathbb{K}} \newcommand{\bbL}{\mathbb{L}}
|
||||
\newcommand{\bbM}{\mathbb{M}} \newcommand{\bbN}{\mathbb{N}}
|
||||
\newcommand{\bbO}{\mathbb{O}} \newcommand{\bbP}{\mathbb{P}}
|
||||
\newcommand{\bbQ}{\mathbb{Q}} \newcommand{\bbR}{\mathbb{R}}
|
||||
\newcommand{\bbS}{\mathbb{S}} \newcommand{\bbT}{\mathbb{T}}
|
||||
\newcommand{\bbU}{\mathbb{U}} \newcommand{\bbV}{\mathbb{V}}
|
||||
\newcommand{\bbW}{\mathbb{W}} \newcommand{\bbX}{\mathbb{X}}
|
||||
\newcommand{\bbY}{\mathbb{Y}} \newcommand{\bbZ}{\mathbb{Z}}
|
||||
|
||||
%---------------------------------------
|
||||
% MathCal Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\mcA}{\mathcal{A}} \newcommand{\mcB}{\mathcal{B}}
|
||||
\newcommand{\mcC}{\mathcal{C}} \newcommand{\mcD}{\mathcal{D}}
|
||||
\newcommand{\mcE}{\mathcal{E}} \newcommand{\mcF}{\mathcal{F}}
|
||||
\newcommand{\mcG}{\mathcal{G}} \newcommand{\mcH}{\mathcal{H}}
|
||||
\newcommand{\mcI}{\mathcal{I}} \newcommand{\mcJ}{\mathcal{J}}
|
||||
\newcommand{\mcK}{\mathcal{K}} \newcommand{\mcL}{\mathcal{L}}
|
||||
\newcommand{\mcM}{\mathcal{M}} \newcommand{\mcN}{\mathcal{N}}
|
||||
\newcommand{\mcO}{\mathcal{O}} \newcommand{\mcP}{\mathcal{P}}
|
||||
\newcommand{\mcQ}{\mathcal{Q}} \newcommand{\mcR}{\mathcal{R}}
|
||||
\newcommand{\mcS}{\mathcal{S}} \newcommand{\mcT}{\mathcal{T}}
|
||||
\newcommand{\mcU}{\mathcal{U}} \newcommand{\mcV}{\mathcal{V}}
|
||||
\newcommand{\mcW}{\mathcal{W}} \newcommand{\mcX}{\mathcal{X}}
|
||||
\newcommand{\mcY}{\mathcal{Y}} \newcommand{\mcZ}{\mathcal{Z}}
|
||||
|
||||
|
||||
%---------------------------------------
|
||||
% Bold Math Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\bmA}{\boldsymbol{A}} \newcommand{\bmB}{\boldsymbol{B}}
|
||||
\newcommand{\bmC}{\boldsymbol{C}} \newcommand{\bmD}{\boldsymbol{D}}
|
||||
\newcommand{\bmE}{\boldsymbol{E}} \newcommand{\bmF}{\boldsymbol{F}}
|
||||
\newcommand{\bmG}{\boldsymbol{G}} \newcommand{\bmH}{\boldsymbol{H}}
|
||||
\newcommand{\bmI}{\boldsymbol{I}} \newcommand{\bmJ}{\boldsymbol{J}}
|
||||
\newcommand{\bmK}{\boldsymbol{K}} \newcommand{\bmL}{\boldsymbol{L}}
|
||||
\newcommand{\bmM}{\boldsymbol{M}} \newcommand{\bmN}{\boldsymbol{N}}
|
||||
\newcommand{\bmO}{\boldsymbol{O}} \newcommand{\bmP}{\boldsymbol{P}}
|
||||
\newcommand{\bmQ}{\boldsymbol{Q}} \newcommand{\bmR}{\boldsymbol{R}}
|
||||
\newcommand{\bmS}{\boldsymbol{S}} \newcommand{\bmT}{\boldsymbol{T}}
|
||||
\newcommand{\bmU}{\boldsymbol{U}} \newcommand{\bmV}{\boldsymbol{V}}
|
||||
\newcommand{\bmW}{\boldsymbol{W}} \newcommand{\bmX}{\boldsymbol{X}}
|
||||
\newcommand{\bmY}{\boldsymbol{Y}} \newcommand{\bmZ}{\boldsymbol{Z}}
|
||||
%Small Letters
|
||||
\newcommand{\bma}{\boldsymbol{a}} \newcommand{\bmb}{\boldsymbol{b}}
|
||||
\newcommand{\bmc}{\boldsymbol{c}} \newcommand{\bmd}{\boldsymbol{d}}
|
||||
\newcommand{\bme}{\boldsymbol{e}} \newcommand{\bmf}{\boldsymbol{f}}
|
||||
\newcommand{\bmg}{\boldsymbol{g}} \newcommand{\bmh}{\boldsymbol{h}}
|
||||
\newcommand{\bmi}{\boldsymbol{i}} \newcommand{\bmj}{\boldsymbol{j}}
|
||||
\newcommand{\bmk}{\boldsymbol{k}} \newcommand{\bml}{\boldsymbol{l}}
|
||||
\newcommand{\bmm}{\boldsymbol{m}} \newcommand{\bmn}{\boldsymbol{n}}
|
||||
\newcommand{\bmo}{\boldsymbol{o}} \newcommand{\bmp}{\boldsymbol{p}}
|
||||
\newcommand{\bmq}{\boldsymbol{q}} \newcommand{\bmr}{\boldsymbol{r}}
|
||||
\newcommand{\bms}{\boldsymbol{s}} \newcommand{\bmt}{\boldsymbol{t}}
|
||||
\newcommand{\bmu}{\boldsymbol{u}} \newcommand{\bmv}{\boldsymbol{v}}
|
||||
\newcommand{\bmw}{\boldsymbol{w}} \newcommand{\bmx}{\boldsymbol{x}}
|
||||
\newcommand{\bmy}{\boldsymbol{y}} \newcommand{\bmz}{\boldsymbol{z}}
|
||||
|
||||
%---------------------------------------
|
||||
% Scr Math Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
\newcommand{\sA}{{\mathscr{A}}} \newcommand{\sB}{{\mathscr{B}}}
|
||||
\newcommand{\sC}{{\mathscr{C}}} \newcommand{\sD}{{\mathscr{D}}}
|
||||
\newcommand{\sE}{{\mathscr{E}}} \newcommand{\sF}{{\mathscr{F}}}
|
||||
\newcommand{\sG}{{\mathscr{G}}} \newcommand{\sH}{{\mathscr{H}}}
|
||||
\newcommand{\sI}{{\mathscr{I}}} \newcommand{\sJ}{{\mathscr{J}}}
|
||||
\newcommand{\sK}{{\mathscr{K}}} \newcommand{\sL}{{\mathscr{L}}}
|
||||
\newcommand{\sM}{{\mathscr{M}}} \newcommand{\sN}{{\mathscr{N}}}
|
||||
\newcommand{\sO}{{\mathscr{O}}} \newcommand{\sP}{{\mathscr{P}}}
|
||||
\newcommand{\sQ}{{\mathscr{Q}}} \newcommand{\sR}{{\mathscr{R}}}
|
||||
\newcommand{\sS}{{\mathscr{S}}} \newcommand{\sT}{{\mathscr{T}}}
|
||||
\newcommand{\sU}{{\mathscr{U}}} \newcommand{\sV}{{\mathscr{V}}}
|
||||
\newcommand{\sW}{{\mathscr{W}}} \newcommand{\sX}{{\mathscr{X}}}
|
||||
\newcommand{\sY}{{\mathscr{Y}}} \newcommand{\sZ}{{\mathscr{Z}}}
|
||||
|
||||
|
||||
%---------------------------------------
|
||||
% Math Fraktur Font
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\mfA}{\mathfrak{A}} \newcommand{\mfB}{\mathfrak{B}}
|
||||
\newcommand{\mfC}{\mathfrak{C}} \newcommand{\mfD}{\mathfrak{D}}
|
||||
\newcommand{\mfE}{\mathfrak{E}} \newcommand{\mfF}{\mathfrak{F}}
|
||||
\newcommand{\mfG}{\mathfrak{G}} \newcommand{\mfH}{\mathfrak{H}}
|
||||
\newcommand{\mfI}{\mathfrak{I}} \newcommand{\mfJ}{\mathfrak{J}}
|
||||
\newcommand{\mfK}{\mathfrak{K}} \newcommand{\mfL}{\mathfrak{L}}
|
||||
\newcommand{\mfM}{\mathfrak{M}} \newcommand{\mfN}{\mathfrak{N}}
|
||||
\newcommand{\mfO}{\mathfrak{O}} \newcommand{\mfP}{\mathfrak{P}}
|
||||
\newcommand{\mfQ}{\mathfrak{Q}} \newcommand{\mfR}{\mathfrak{R}}
|
||||
\newcommand{\mfS}{\mathfrak{S}} \newcommand{\mfT}{\mathfrak{T}}
|
||||
\newcommand{\mfU}{\mathfrak{U}} \newcommand{\mfV}{\mathfrak{V}}
|
||||
\newcommand{\mfW}{\mathfrak{W}} \newcommand{\mfX}{\mathfrak{X}}
|
||||
\newcommand{\mfY}{\mathfrak{Y}} \newcommand{\mfZ}{\mathfrak{Z}}
|
||||
%Small Letters
|
||||
\newcommand{\mfa}{\mathfrak{a}} \newcommand{\mfb}{\mathfrak{b}}
|
||||
\newcommand{\mfc}{\mathfrak{c}} \newcommand{\mfd}{\mathfrak{d}}
|
||||
\newcommand{\mfe}{\mathfrak{e}} \newcommand{\mff}{\mathfrak{f}}
|
||||
\newcommand{\mfg}{\mathfrak{g}} \newcommand{\mfh}{\mathfrak{h}}
|
||||
\newcommand{\mfi}{\mathfrak{i}} \newcommand{\mfj}{\mathfrak{j}}
|
||||
\newcommand{\mfk}{\mathfrak{k}} \newcommand{\mfl}{\mathfrak{l}}
|
||||
\newcommand{\mfm}{\mathfrak{m}} \newcommand{\mfn}{\mathfrak{n}}
|
||||
\newcommand{\mfo}{\mathfrak{o}} \newcommand{\mfp}{\mathfrak{p}}
|
||||
\newcommand{\mfq}{\mathfrak{q}} \newcommand{\mfr}{\mathfrak{r}}
|
||||
\newcommand{\mfs}{\mathfrak{s}} \newcommand{\mft}{\mathfrak{t}}
|
||||
\newcommand{\mfu}{\mathfrak{u}} \newcommand{\mfv}{\mathfrak{v}}
|
||||
\newcommand{\mfw}{\mathfrak{w}} \newcommand{\mfx}{\mathfrak{x}}
|
||||
\newcommand{\mfy}{\mathfrak{y}} \newcommand{\mfz}{\mathfrak{z}}
|
@@ -0,0 +1,3 @@
|
||||
\chapter{Lineare Abbildungen}
|
||||
|
||||
\newpage
|
@@ -0,0 +1,3 @@
|
||||
\chapter{Lineare Gleichungssysteme}
|
||||
|
||||
\input{vektoren_matrizen.tex}
|
@@ -0,0 +1,287 @@
|
||||
\section{Vektoren, Matrizen}
|
||||
|
||||
\subsection{2 Dimensionen}
|
||||
|
||||
Im Zweidimensionalen bestehen Vektoren aus zwei Komponenten, welche in einem Koordinatensystem dargestellt werden kann.
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{minipage}{0.7\linewidth}
|
||||
\includegraphics[width=\linewidth]{fig/Fig_1.png}
|
||||
\caption{Zweidimensionaler Vektor}
|
||||
\label{fig:vek1}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.3\linewidth}
|
||||
\[
|
||||
\vec{x} =
|
||||
\begin{bmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
\end{bmatrix}
|
||||
\in \mathbb{R} ^2
|
||||
.\]
|
||||
\end{minipage}
|
||||
\end{figure}
|
||||
|
||||
Die Vektoren $\vec{e}_1$ und $\vec{e}_2$ aus Grafik \ref{fig:vek1} sind die Einheitsvektoren und können einen Vektor als Gleichung darstellen. Des Weiteren werden die Einheitsvektoren für die kanonische Basis wichtig sein.
|
||||
|
||||
\[
|
||||
\vec{e}_1 =
|
||||
\begin{bmatrix}
|
||||
1 \\
|
||||
0 \\
|
||||
\end{bmatrix},
|
||||
\vec{e}_2 =
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
1 \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
\[
|
||||
\vec{x} =
|
||||
\begin{bmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
\end{bmatrix} =
|
||||
\begin{bmatrix}
|
||||
x_1 \\
|
||||
0 \\
|
||||
\end{bmatrix} +
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
x_2 \\
|
||||
\end{bmatrix} =
|
||||
x_1 \cdot \begin{bmatrix}
|
||||
1 \\
|
||||
0 \\
|
||||
\end{bmatrix} + x_2 \cdot
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
1 \\
|
||||
\end{bmatrix} = x_1 \cdot \vec{e}_1 + x_2 \cdot \vec{e}_2
|
||||
.\]
|
||||
|
||||
Unser Beispiel bestand aus reellen Zahlen $\mathbb{R}$ und befand sich im $\mathbb{R}^2$. Wir können dies jedoch erweitern zu den komplexen Zahlen $\mathbb{C}$. Somit können die Komponenten nun aus Komplexen Zahlen bestehen. Des Weiteren können wir die Dimension erweitern ins Dreidimensionale.
|
||||
|
||||
\subsection{3 Dimensionen}
|
||||
|
||||
Im Vergleich zum Zweidimensionalen bestehen Vektoren im Dreidimensionalen aus drei Komponenten, welche auch in einem Koordinatensystem dargestellt werden kann.
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{minipage}{0.7\linewidth}
|
||||
\includegraphics[width=\textwidth]{fig/Fig_2.png}
|
||||
\caption{Dreidimensionaler Vektor}
|
||||
\label{fig:vek2}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.3\linewidth}
|
||||
\[
|
||||
\vec{x} = \begin{bmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
x_3 \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
\end{minipage}
|
||||
\end{figure}
|
||||
|
||||
Wie in Grafik \ref{fig:vek1} sind die Vektoren $\vec{e_1}, \vec{e_2}$ und $\vec{e_3}$ aus Grafik \ref{fig:vek2} Einheitsvektoren, welche dreidimensionale Vektoren als Gleichung darstellen können.
|
||||
|
||||
\[
|
||||
\vec{e_1} = \begin{bmatrix}
|
||||
1 \\
|
||||
0 \\
|
||||
0 \\
|
||||
\end{bmatrix}, \vec{e_2} = \begin{bmatrix}
|
||||
0 \\
|
||||
1 \\
|
||||
0 \\
|
||||
\end{bmatrix}, \vec{e_3} = \begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
1 \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
|
||||
\[
|
||||
\vec{x} = \begin{bmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
x_3 \\
|
||||
\end{bmatrix} = x_1 \cdot \begin{bmatrix}
|
||||
1 \\
|
||||
0 \\
|
||||
0 \\
|
||||
\end{bmatrix} + x_2 \cdot \begin{bmatrix}
|
||||
0 \\
|
||||
1 \\
|
||||
0 \\
|
||||
\end{bmatrix} + x_3 \cdot \begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
1 \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
\nt{
|
||||
Die Gleichungen, welche die Vektoren darstellen, nennt man auch eine lineare Kombination von Vektoren.
|
||||
}
|
||||
|
||||
\subsection{Lineare Kombination}
|
||||
|
||||
\dfn{lineare Kombination \cite{Gradinaru2024}}{
|
||||
Die lineare Kombination von Vektoren $\vec{v_1}, ... , \vec{v_n}$ ist:
|
||||
|
||||
\[
|
||||
c_1 \cdot \vec{v_1} + c_2 \cdot \vec{v_2} + ... + c_n \vec{v_n}
|
||||
.\]
|
||||
|
||||
wobei die $c_1, c_2, ... , c_n$ Skalare in $\mathbb{R}$ oder $\mathbb{C}$ sind.
|
||||
}
|
||||
|
||||
Die lineare Kombination ist eine Summe von Termen, wobei jeder Term ein gestreckter/gestauchter Vektor (d.h. die Multiplikation eines Skalars mit einem Vektor) ist. \cite{Gradinaru2024}
|
||||
|
||||
\subsection{$n$ Dimensionen}
|
||||
|
||||
Vektoren können natürlich mehr als zwei oder drei Komponenten haben. Wir können es auf $n$ Komponenten erweitern und deshalb auf $n$ Dimensionen. Dies bedeutet, dass wir unser Koordinatensystem auf $n$ Dimensionen erweitern. Somit hat der zugehörige Vektor $\vec{x} \in \mathbb{R} ^{n}$ die Komponenten $x_1, x_2, ... , x_{n}$.
|
||||
|
||||
\[
|
||||
\vec{x} = \begin{bmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
\vdots \\
|
||||
x_{n} \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
Vektoren in $n$-dimensionalen Räumen können auch als eine lineare Kombination dargestellt werden.
|
||||
|
||||
\[
|
||||
\vec{x} = \begin{bmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
\vdots \\
|
||||
x_{n} \\
|
||||
\end{bmatrix} = x_1 \cdot \vec{e_1} + x_2 \cdot \vec{e_2} + ... + x_{n} \cdot \vec{e_n}
|
||||
.\]
|
||||
|
||||
\dfn{Standardbasis \cite{Gradinaru2024}}{
|
||||
Sie Standardbasis (oder auch die kanonische Basis) in diesem $n$-dimensionalen Koordinatensystem besteht aus den folgenden $n$ Vektoren:
|
||||
|
||||
\[
|
||||
\vec{e_1} = \begin{bmatrix}
|
||||
1 \\
|
||||
0 \\
|
||||
\vdots \\
|
||||
0 \\
|
||||
\end{bmatrix}, \vec{e_2} = \begin{bmatrix}
|
||||
0 \\
|
||||
1 \\
|
||||
\vdots \\
|
||||
0 \\
|
||||
\end{bmatrix}, ... , \vec{e_j} = \begin{bmatrix}
|
||||
0 \\
|
||||
\vdots \\
|
||||
1 \\
|
||||
\vdots \\
|
||||
0 \\
|
||||
\end{bmatrix}, ... , \vec{e_n} = \begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
\vdots \\
|
||||
1 \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
}
|
||||
|
||||
\subsection{Anwendung der linearen Kombination: Die Superposition von Feldern}
|
||||
|
||||
Die lineare Kombination wir vor allem bei der Superposition bzw. der Überlagerung von Kräften verwendet.
|
||||
|
||||
Nehmen wir an, dass 3 Vektoren $\in \mathbb{R} ^{3}$ gegeben sind.
|
||||
|
||||
\[
|
||||
\vec{a_1} = \begin{bmatrix}
|
||||
a_{11} \\
|
||||
a_{21} \\
|
||||
a_{31} \\
|
||||
\end{bmatrix}, \vec{a_2} = \begin{bmatrix}
|
||||
a_{12} \\
|
||||
a_{22} \\
|
||||
a_{32} \\
|
||||
\end{bmatrix}, \vec{a_3} = \begin{bmatrix}
|
||||
a_{13} \\
|
||||
a_{23} \\
|
||||
a_{33} \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
Jetzt wollen wir die Skalare herausfinden, welche den resultierenden Vektor $\vec{b}$ durch eine lineare Kombination mit den Vektoren $\vec{a_1}, \vec{a_2}, \vec{a_3}$ darstellen.
|
||||
|
||||
\[
|
||||
\vec{b} = x_1 \cdot \vec{a_1} + x_2 \cdot \vec{a_2} + x_3 \cdot \vec{a_3} \text{ mit } x_1, x_2, x_3 \in \mathbb{R}
|
||||
.\]
|
||||
|
||||
Daraus können wir nun ein Gleichungssystem bilden.
|
||||
|
||||
\[
|
||||
\left\{
|
||||
\begin{array}{lr}
|
||||
a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 = b_1 \\
|
||||
a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 = b_2 \\
|
||||
a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 = b_3 \\
|
||||
\end{array}
|
||||
\right.
|
||||
.\]
|
||||
|
||||
Das Gleichungssystem stellen wir nun wie folgt mit Matrizen und Vektoren dar.
|
||||
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
a_{11} & a_{12} & a_{13} \\
|
||||
a_{21} & a_{22} & a_{23} \\
|
||||
a_{31} & a_{32} & a_{33} \\
|
||||
\end{bmatrix} \cdot \begin{bmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
x_3 \\
|
||||
\end{bmatrix} = \begin{bmatrix}
|
||||
b_1 \\
|
||||
b_2 \\
|
||||
b_3 \\
|
||||
\end{bmatrix}
|
||||
.\]
|
||||
|
||||
Die Vektoren $\vec{a_1}, \vec{a_2}, \vec{a_3}$ werden nebeneinander in einer Matrix geschrieben. Die Skalare $x_1, x_2, x_3$ werden als Vektor neben der Matrix geschrieben. Vereinfacht kann man auch $\vec{A} \cdot \vec{x} = \vec{b}$ schreiben.
|
||||
|
||||
\dfn{Lineares Gleichungssystem (LGS) \cite{Gradinaru2024}}{
|
||||
Ein lineares Gleichungssystem (LGS) wird kurz geschrieben als:
|
||||
|
||||
\[
|
||||
\vec{A} \cdot \vec{x} = \vec{b}
|
||||
,\]
|
||||
|
||||
wobei $\vec{A}$ die Koeffizientenmatrix, $\vec{x}$ die Unbekannte und $\vec{b}$ die rechte Seite ist.
|
||||
}
|
||||
|
||||
\nt{
|
||||
Bei der Rechenoperation $\vec{A} \cdot \vec{x}$ handelt es sich um eine Matrix Vektor Multiplikation.
|
||||
}
|
||||
|
||||
Für lineare Gleichungssysteme gilt:
|
||||
|
||||
\[
|
||||
\vec{A} \cdot \vec{x} = \vec{b} \Longleftrightarrow \vec{x} = \vec{A}^{-1} \cdot \vec{b}
|
||||
.\]
|
||||
|
||||
Die Inverse sowie die Multiplikation von Matrizen wird zu einem späteren Zeitpunkt besprochen.
|
||||
\\
|
||||
\\
|
||||
Wichtig zu erwähnen ist, dass es nicht immer eine Inverse einer Matrix gibt, dies bedeutet aber nicht, dass das Gleichungssystem nicht lösbar ist. Um herauszufinden ob ein LGS lösbar ist, führen wir die Kompabilitätsbedingung (KB) ein. Dabei gilt folgendes:
|
||||
|
||||
\begin{itemize}
|
||||
\item falls $b_1 + b_2 + b_3 \neq 0$, dann gibt es keine Lösung;
|
||||
\item falls $b_1 + b_2 + b_3 = 0$, dann gibt es unendlich viele Lösungen.
|
||||
\end{itemize}
|
||||
|
||||
Falls $b_1 + b_2 + b_3 = 0$ gilt, so kann $x_3$ beliebig gewählt werden.
|
3
hs24/lineare_algebra/lineare_raeume/lineare_raeume.tex
Normal file
@@ -0,0 +1,3 @@
|
||||
\chapter{Lineare Räume}
|
||||
|
||||
\newpage
|
88
hs24/lineare_algebra/macros.tex
Normal file
@@ -0,0 +1,88 @@
|
||||
%From M275 "Topology" at SJSU
|
||||
\newcommand{\id}{\mathrm{id}}
|
||||
\newcommand{\taking}[1]{\xrightarrow{#1}}
|
||||
\newcommand{\inv}{^{-1}}
|
||||
|
||||
%From M170 "Introduction to Graph Theory" at SJSU
|
||||
\DeclareMathOperator{\diam}{diam}
|
||||
\DeclareMathOperator{\ord}{ord}
|
||||
\newcommand{\defeq}{\overset{\mathrm{def}}{=}}
|
||||
|
||||
%From the USAMO .tex files
|
||||
\newcommand{\ts}{\textsuperscript}
|
||||
\newcommand{\dg}{^\circ}
|
||||
\newcommand{\ii}{\item}
|
||||
|
||||
% % From Math 55 and Math 145 at Harvard
|
||||
% \newenvironment{subproof}[1][Proof]{%
|
||||
% \begin{proof}[#1] \renewcommand{\qedsymbol}{$\blacksquare$}}%
|
||||
% {\end{proof}}
|
||||
|
||||
\newcommand{\liff}{\leftrightarrow}
|
||||
\newcommand{\lthen}{\rightarrow}
|
||||
\newcommand{\opname}{\operatorname}
|
||||
\newcommand{\surjto}{\twoheadrightarrow}
|
||||
\newcommand{\injto}{\hookrightarrow}
|
||||
\newcommand{\On}{\mathrm{On}} % ordinals
|
||||
\DeclareMathOperator{\img}{im} % Image
|
||||
\DeclareMathOperator{\Img}{Im} % Image
|
||||
\DeclareMathOperator{\coker}{coker} % Cokernel
|
||||
\DeclareMathOperator{\Coker}{Coker} % Cokernel
|
||||
\DeclareMathOperator{\Ker}{Ker} % Kernel
|
||||
\DeclareMathOperator{\rank}{rank}
|
||||
\DeclareMathOperator{\Spec}{Spec} % spectrum
|
||||
\DeclareMathOperator{\Tr}{Tr} % trace
|
||||
\DeclareMathOperator{\pr}{pr} % projection
|
||||
\DeclareMathOperator{\ext}{ext} % extension
|
||||
\DeclareMathOperator{\pred}{pred} % predecessor
|
||||
\DeclareMathOperator{\dom}{dom} % domain
|
||||
\DeclareMathOperator{\ran}{ran} % range
|
||||
\DeclareMathOperator{\Hom}{Hom} % homomorphism
|
||||
\DeclareMathOperator{\Mor}{Mor} % morphisms
|
||||
\DeclareMathOperator{\End}{End} % endomorphism
|
||||
|
||||
\newcommand{\eps}{\epsilon}
|
||||
\newcommand{\veps}{\varepsilon}
|
||||
\newcommand{\ol}{\overline}
|
||||
\newcommand{\ul}{\underline}
|
||||
\newcommand{\wt}{\widetilde}
|
||||
\newcommand{\wh}{\widehat}
|
||||
\newcommand{\vocab}[1]{\textbf{\color{blue} #1}}
|
||||
\providecommand{\half}{\frac{1}{2}}
|
||||
\newcommand{\dang}{\measuredangle} %% Directed angle
|
||||
\newcommand{\ray}[1]{\overrightarrow{#1}}
|
||||
\newcommand{\seg}[1]{\overline{#1}}
|
||||
\newcommand{\arc}[1]{\wideparen{#1}}
|
||||
\DeclareMathOperator{\cis}{cis}
|
||||
\DeclareMathOperator*{\lcm}{lcm}
|
||||
\DeclareMathOperator*{\argmin}{arg min}
|
||||
\DeclareMathOperator*{\argmax}{arg max}
|
||||
\newcommand{\cycsum}{\sum_{\mathrm{cyc}}}
|
||||
\newcommand{\symsum}{\sum_{\mathrm{sym}}}
|
||||
\newcommand{\cycprod}{\prod_{\mathrm{cyc}}}
|
||||
\newcommand{\symprod}{\prod_{\mathrm{sym}}}
|
||||
\newcommand{\Qed}{\begin{flushright}\qed\end{flushright}}
|
||||
\newcommand{\parinn}{\setlength{\parindent}{1cm}}
|
||||
\newcommand{\parinf}{\setlength{\parindent}{0cm}}
|
||||
% \newcommand{\norm}{\|\cdot\|}
|
||||
\newcommand{\inorm}{\norm_{\infty}}
|
||||
\newcommand{\opensets}{\{V_{\alpha}\}_{\alpha\in I}}
|
||||
\newcommand{\oset}{V_{\alpha}}
|
||||
\newcommand{\opset}[1]{V_{\alpha_{#1}}}
|
||||
\newcommand{\lub}{\text{lub}}
|
||||
\newcommand{\del}[2]{\frac{\partial #1}{\partial #2}}
|
||||
\newcommand{\Del}[3]{\frac{\partial^{#1} #2}{\partial^{#1} #3}}
|
||||
\newcommand{\deld}[2]{\dfrac{\partial #1}{\partial #2}}
|
||||
\newcommand{\Deld}[3]{\dfrac{\partial^{#1} #2}{\partial^{#1} #3}}
|
||||
\newcommand{\lm}{\lambda}
|
||||
\newcommand{\uin}{\mathbin{\rotatebox[origin=c]{90}{$\in$}}}
|
||||
\newcommand{\usubset}{\mathbin{\rotatebox[origin=c]{90}{$\subset$}}}
|
||||
\newcommand{\lt}{\left}
|
||||
\newcommand{\rt}{\right}
|
||||
\newcommand{\bs}[1]{\boldsymbol{#1}}
|
||||
\newcommand{\exs}{\exists}
|
||||
\newcommand{\st}{\strut}
|
||||
\newcommand{\dps}[1]{\displaystyle{#1}}
|
||||
|
||||
\newcommand{\sol}{\setlength{\parindent}{0cm}\textbf{\textit{Solution:}}\setlength{\parindent}{1cm} }
|
||||
\newcommand{\solve}[1]{\setlength{\parindent}{0cm}\textbf{\textit{Solution: }}\setlength{\parindent}{1cm}#1 \Qed}
|
@@ -0,0 +1,2 @@
|
||||
\section{Die adjugierte Abbildung}
|
||||
|
@@ -0,0 +1,2 @@
|
||||
\section{Darstellungssatz von Riesz}
|
||||
|
@@ -0,0 +1,2 @@
|
||||
\section{Gram-Schmidt-Algorithmus}
|
||||
|
@@ -0,0 +1,7 @@
|
||||
\chapter{Norm und Skalarprodukt in linearen Räumen}
|
||||
|
||||
%\input{gram_schmidt_algorithmus.tex}
|
||||
% \input{darstellungssatz_von_riesz.tex}
|
||||
% \input{adjugierte_abbildung.tex}
|
||||
|
||||
\newpage
|
8
hs24/lineare_algebra/notes.tex
Normal file
@@ -0,0 +1,8 @@
|
||||
\import{./lineare_gleichungssysteme}{lineare_gleichungssysteme.tex}
|
||||
\import{./lineare_raeume}{lineare_raeume.tex}
|
||||
\import{./lineare_abbildungen}{lineare_abbildungen.tex}
|
||||
\import{./norm_und_skalarprodukt_in_linearen_raeumen}{norm_und_skalarprodukt_in_linearen_raeumen.tex}
|
||||
\import{./ausgleichsrechnung}{ausgleichsrechnung.tex}
|
||||
\import{./determinante}{determinante.tex}
|
||||
\import{./eigenwertproblem}{eigenwertproblem.tex}
|
||||
\import{./singulaerwertzerlegung}{singulaerwertzerlegung.tex}
|
11
hs24/lineare_algebra/notizen_lineare_algebra_ruh_jirayu.bbl
Normal file
@@ -0,0 +1,11 @@
|
||||
\begin{thebibliography}{}
|
||||
|
||||
\bibitem[Gradinaru, 2024]{Gradinaru2024}
|
||||
Gradinaru, Prof.~Dr., V. (2024).
|
||||
\newblock {Lineare Algebra}.
|
||||
|
||||
\bibitem[{The Manim Community Developers}, 2024]{MCD2024}
|
||||
{The Manim Community Developers} (2024).
|
||||
\newblock {Manim - Mathematical Animation Framework}.
|
||||
|
||||
\end{thebibliography}
|
BIN
hs24/lineare_algebra/notizen_lineare_algebra_ruh_jirayu.pdf
Normal file
43
hs24/lineare_algebra/notizen_lineare_algebra_ruh_jirayu.tex
Normal file
@@ -0,0 +1,43 @@
|
||||
\documentclass{report}
|
||||
|
||||
\def\papertitle{Lineare Algebra}
|
||||
|
||||
\def\theorytitle{Satz}
|
||||
\def\corollarytitle{Korollar}
|
||||
\def\proposaltitle{Vorschlag}
|
||||
\def\claimtitle{Behauptung}
|
||||
\def\exercisetitle{Aufgabe}
|
||||
\def\exampletitle{Beispiel}
|
||||
\def\questiontitle{Frage}
|
||||
\def\wrongctitle{Falscher Konzept}
|
||||
|
||||
\input{preamble}
|
||||
\input{macros}
|
||||
\input{letterfonts}
|
||||
|
||||
\title{\huge{\papertitle}}
|
||||
\author{\huge{Jirayu Ruh}}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
\maketitle
|
||||
\newpage% or \cleardoublepage
|
||||
% \pdfbookmark[<level>]{<title>}{<dest>}
|
||||
\pdfbookmark[section]{\contentsname}{toc}
|
||||
\tableofcontents
|
||||
\pagebreak
|
||||
|
||||
\input{disclaimer.tex}
|
||||
\input{notes.tex}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% BIBLIOGRAPHY
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\addcontentsline{toc}{chapter}{References}
|
||||
\bibliographystyle{apalike}
|
||||
\bibliography{sources}
|
||||
|
||||
\end{document}
|
778
hs24/lineare_algebra/preamble.tex
Normal file
@@ -0,0 +1,778 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% PACKAGE IMPORTS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\usepackage[ngerman]{babel}
|
||||
\usepackage[tmargin=2cm,rmargin=1in,lmargin=1in,margin=0.85in,bmargin=2cm,footskip=.2in]{geometry}
|
||||
\usepackage{amsmath,amsfonts,amsthm,amssymb,mathtools}
|
||||
\usepackage[varbb]{newpxmath}
|
||||
\usepackage{xfrac}
|
||||
\usepackage[makeroom]{cancel}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{bookmark}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{hyperref,theoremref}
|
||||
\hypersetup{
|
||||
pdftitle={Assignment},
|
||||
colorlinks=true, linkcolor=doc!90,
|
||||
bookmarksnumbered=true,
|
||||
bookmarksopen=true
|
||||
}
|
||||
\usepackage[most,many,breakable]{tcolorbox}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{varwidth}
|
||||
\usepackage{varwidth}
|
||||
\usepackage{etoolbox}
|
||||
%\usepackage{authblk}
|
||||
\usepackage{nameref}
|
||||
\usepackage{multicol,array}
|
||||
\usepackage{tikz-cd}
|
||||
\usepackage[ruled,vlined,linesnumbered]{algorithm2e}
|
||||
\usepackage{comment} % enables the use of multi-line comments (\ifx \fi)
|
||||
\usepackage{import}
|
||||
\usepackage{xifthen}
|
||||
\usepackage{pdfpages}
|
||||
\usepackage{transparent}
|
||||
\usepackage{caption}
|
||||
|
||||
\newcommand\mycommfont[1]{\footnotesize\ttfamily\textcolor{blue}{#1}}
|
||||
\SetCommentSty{mycommfont}
|
||||
\newcommand{\incfig}[1]{%
|
||||
\def\svgwidth{\columnwidth}
|
||||
\import{./figures/}{#1.pdf_tex}
|
||||
}
|
||||
|
||||
\usepackage{tikzsymbols}
|
||||
\renewcommand\qedsymbol{$\Laughey$}
|
||||
|
||||
|
||||
%\usepackage{import}
|
||||
%\usepackage{xifthen}
|
||||
%\usepackage{pdfpages}
|
||||
%\usepackage{transparent}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% SELF MADE COLORS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
|
||||
\definecolor{myg}{RGB}{56, 140, 70}
|
||||
\definecolor{myb}{RGB}{45, 111, 177}
|
||||
\definecolor{myr}{RGB}{199, 68, 64}
|
||||
\definecolor{mytheorembg}{HTML}{F2F2F9}
|
||||
\definecolor{mytheoremfr}{HTML}{00007B}
|
||||
\definecolor{mylenmabg}{HTML}{FFFAF8}
|
||||
\definecolor{mylenmafr}{HTML}{983b0f}
|
||||
\definecolor{mypropbg}{HTML}{f2fbfc}
|
||||
\definecolor{mypropfr}{HTML}{191971}
|
||||
\definecolor{myexamplebg}{HTML}{F2FBF8}
|
||||
\definecolor{myexamplefr}{HTML}{88D6D1}
|
||||
\definecolor{myexampleti}{HTML}{2A7F7F}
|
||||
\definecolor{mydefinitbg}{HTML}{E5E5FF}
|
||||
\definecolor{mydefinitfr}{HTML}{3F3FA3}
|
||||
\definecolor{notesgreen}{RGB}{0,162,0}
|
||||
\definecolor{myp}{RGB}{197, 92, 212}
|
||||
\definecolor{mygr}{HTML}{2C3338}
|
||||
\definecolor{myred}{RGB}{127,0,0}
|
||||
\definecolor{myyellow}{RGB}{169,121,69}
|
||||
\definecolor{myexercisebg}{HTML}{F2FBF8}
|
||||
\definecolor{myexercisefg}{HTML}{88D6D1}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TCOLORBOX SETUPS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\setlength{\parindent}{0cm}
|
||||
%================================
|
||||
% THEOREM BOX
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Theorem}{\theorytitle}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mytheorembg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mytheoremfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mytheoremfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mytheoremfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{theorem}{\theorytitle}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mytheorembg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mytheoremfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mytheoremfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mytheoremfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcolorbox{Theoremcon}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = mytheorembg
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{mytheoremfr}
|
||||
,sharp corners
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
}
|
||||
|
||||
%================================
|
||||
% Corollery
|
||||
%================================
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Corollary}{\corollarytitle}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = myp!10
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{myp!85!black}
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper = \tcbtitle\par\smallskip
|
||||
,coltitle = myp!85!black
|
||||
,fonttitle = \bfseries\sffamily
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,segmentation style={solid, myp!85!black}
|
||||
}
|
||||
{th}
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{corollary}{\corollarytitle}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = myp!10
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{myp!85!black}
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper = \tcbtitle\par\smallskip
|
||||
,coltitle = myp!85!black
|
||||
,fonttitle = \bfseries\sffamily
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,segmentation style={solid, myp!85!black}
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
%================================
|
||||
% LENMA
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Lenma}{Lenma}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mylenmabg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mylenmafr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mylenmafr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mylenmafr},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{lenma}{Lenma}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mylenmabg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mylenmafr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mylenmafr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mylenmafr},
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
%================================
|
||||
% PROPOSITION
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Prop}{\proposaltitle}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mypropbg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mypropfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mypropfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mypropfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{prop}{\proposaltitle}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mypropbg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mypropfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mypropfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mypropfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
%================================
|
||||
% CLAIM
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{claim}{\claimtitle}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = myg!10
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{myg}
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper = \tcbtitle\par\smallskip
|
||||
,coltitle = myg!85!black
|
||||
,fonttitle = \bfseries\sffamily
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,segmentation style={solid, myg!85!black}
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
|
||||
%================================
|
||||
% Exercise
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Exercise}{\exercisetitle}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = myexercisebg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{myexercisefg},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = myexercisefg,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, myexercisefg},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{exercise}{\exercisetitle}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = myexercisebg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{myexercisefg},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = myexercisefg,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, myexercisefg},
|
||||
}
|
||||
{th}
|
||||
|
||||
%================================
|
||||
% EXAMPLE BOX
|
||||
%================================
|
||||
|
||||
\newtcbtheorem[number within=section]{Example}{\exampletitle}
|
||||
{%
|
||||
colback = myexamplebg
|
||||
,breakable
|
||||
,colframe = myexamplefr
|
||||
,coltitle = myexampleti
|
||||
,boxrule = 1pt
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper=\tcbtitle\par\smallskip
|
||||
,fonttitle = \bfseries
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,description delimiters parenthesis
|
||||
}
|
||||
{ex}
|
||||
|
||||
\newtcbtheorem[number within=chapter]{example}{\exampletitle}
|
||||
{%
|
||||
colback = myexamplebg
|
||||
,breakable
|
||||
,colframe = myexamplefr
|
||||
,coltitle = myexampleti
|
||||
,boxrule = 1pt
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper=\tcbtitle\par\smallskip
|
||||
,fonttitle = \bfseries
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,description delimiters parenthesis
|
||||
}
|
||||
{ex}
|
||||
|
||||
%================================
|
||||
% DEFINITION BOX
|
||||
%================================
|
||||
|
||||
\newtcbtheorem[number within=section]{Definition}{Definition}{enhanced,
|
||||
before skip=2mm,after skip=2mm, colback=red!5,colframe=red!80!black,boxrule=0.5mm,
|
||||
attach boxed title to top left={xshift=1cm,yshift*=1mm-\tcboxedtitleheight}, varwidth boxed title*=-3cm,
|
||||
boxed title style={frame code={
|
||||
\path[fill=tcbcolback]
|
||||
([yshift=-1mm,xshift=-1mm]frame.north west)
|
||||
arc[start angle=0,end angle=180,radius=1mm]
|
||||
([yshift=-1mm,xshift=1mm]frame.north east)
|
||||
arc[start angle=180,end angle=0,radius=1mm];
|
||||
\path[left color=tcbcolback!60!black,right color=tcbcolback!60!black,
|
||||
middle color=tcbcolback!80!black]
|
||||
([xshift=-2mm]frame.north west) -- ([xshift=2mm]frame.north east)
|
||||
[rounded corners=1mm]-- ([xshift=1mm,yshift=-1mm]frame.north east)
|
||||
-- (frame.south east) -- (frame.south west)
|
||||
-- ([xshift=-1mm,yshift=-1mm]frame.north west)
|
||||
[sharp corners]-- cycle;
|
||||
},interior engine=empty,
|
||||
},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},#1}{def}
|
||||
\newtcbtheorem[number within=chapter]{definition}{Definition}{enhanced,
|
||||
before skip=2mm,after skip=2mm, colback=red!5,colframe=red!80!black,boxrule=0.5mm,
|
||||
attach boxed title to top left={xshift=1cm,yshift*=1mm-\tcboxedtitleheight}, varwidth boxed title*=-3cm,
|
||||
boxed title style={frame code={
|
||||
\path[fill=tcbcolback]
|
||||
([yshift=-1mm,xshift=-1mm]frame.north west)
|
||||
arc[start angle=0,end angle=180,radius=1mm]
|
||||
([yshift=-1mm,xshift=1mm]frame.north east)
|
||||
arc[start angle=180,end angle=0,radius=1mm];
|
||||
\path[left color=tcbcolback!60!black,right color=tcbcolback!60!black,
|
||||
middle color=tcbcolback!80!black]
|
||||
([xshift=-2mm]frame.north west) -- ([xshift=2mm]frame.north east)
|
||||
[rounded corners=1mm]-- ([xshift=1mm,yshift=-1mm]frame.north east)
|
||||
-- (frame.south east) -- (frame.south west)
|
||||
-- ([xshift=-1mm,yshift=-1mm]frame.north west)
|
||||
[sharp corners]-- cycle;
|
||||
},interior engine=empty,
|
||||
},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},#1}{def}
|
||||
|
||||
|
||||
|
||||
%================================
|
||||
% Solution BOX
|
||||
%================================
|
||||
|
||||
\makeatletter
|
||||
\newtcbtheorem{question}{\questiontitle}{enhanced,
|
||||
breakable,
|
||||
colback=white,
|
||||
colframe=myb!80!black,
|
||||
attach boxed title to top left={yshift*=-\tcboxedtitleheight},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},
|
||||
boxed title size=title,
|
||||
boxed title style={%
|
||||
sharp corners,
|
||||
rounded corners=northwest,
|
||||
colback=tcbcolframe,
|
||||
boxrule=0pt,
|
||||
},
|
||||
underlay boxed title={%
|
||||
\path[fill=tcbcolframe] (title.south west)--(title.south east)
|
||||
to[out=0, in=180] ([xshift=5mm]title.east)--
|
||||
(title.center-|frame.east)
|
||||
[rounded corners=\kvtcb@arc] |-
|
||||
(frame.north) -| cycle;
|
||||
},
|
||||
#1
|
||||
}{def}
|
||||
\makeatother
|
||||
|
||||
%================================
|
||||
% SOLUTION BOX
|
||||
%================================
|
||||
|
||||
\makeatletter
|
||||
\newtcolorbox{solution}{enhanced,
|
||||
breakable,
|
||||
colback=white,
|
||||
colframe=myg!80!black,
|
||||
attach boxed title to top left={yshift*=-\tcboxedtitleheight},
|
||||
title=Solution,
|
||||
boxed title size=title,
|
||||
boxed title style={%
|
||||
sharp corners,
|
||||
rounded corners=northwest,
|
||||
colback=tcbcolframe,
|
||||
boxrule=0pt,
|
||||
},
|
||||
underlay boxed title={%
|
||||
\path[fill=tcbcolframe] (title.south west)--(title.south east)
|
||||
to[out=0, in=180] ([xshift=5mm]title.east)--
|
||||
(title.center-|frame.east)
|
||||
[rounded corners=\kvtcb@arc] |-
|
||||
(frame.north) -| cycle;
|
||||
},
|
||||
}
|
||||
\makeatother
|
||||
|
||||
%================================
|
||||
% Question BOX
|
||||
%================================
|
||||
|
||||
\makeatletter
|
||||
\newtcbtheorem{qstion}{\questiontitle}{enhanced,
|
||||
breakable,
|
||||
colback=white,
|
||||
colframe=mygr,
|
||||
attach boxed title to top left={yshift*=-\tcboxedtitleheight},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},
|
||||
boxed title size=title,
|
||||
boxed title style={%
|
||||
sharp corners,
|
||||
rounded corners=northwest,
|
||||
colback=tcbcolframe,
|
||||
boxrule=0pt,
|
||||
},
|
||||
underlay boxed title={%
|
||||
\path[fill=tcbcolframe] (title.south west)--(title.south east)
|
||||
to[out=0, in=180] ([xshift=5mm]title.east)--
|
||||
(title.center-|frame.east)
|
||||
[rounded corners=\kvtcb@arc] |-
|
||||
(frame.north) -| cycle;
|
||||
},
|
||||
#1
|
||||
}{def}
|
||||
\makeatother
|
||||
|
||||
\newtcbtheorem[number within=chapter]{wconc}{\wrongctitle}{
|
||||
breakable,
|
||||
enhanced,
|
||||
colback=white,
|
||||
colframe=myr,
|
||||
arc=0pt,
|
||||
outer arc=0pt,
|
||||
fonttitle=\bfseries\sffamily\large,
|
||||
colbacktitle=myr,
|
||||
attach boxed title to top left={},
|
||||
boxed title style={
|
||||
enhanced,
|
||||
skin=enhancedfirst jigsaw,
|
||||
arc=3pt,
|
||||
bottom=0pt,
|
||||
interior style={fill=myr}
|
||||
},
|
||||
#1
|
||||
}{def}
|
||||
|
||||
|
||||
|
||||
%================================
|
||||
% NOTE BOX
|
||||
%================================
|
||||
|
||||
\usetikzlibrary{arrows,calc,shadows.blur}
|
||||
\tcbuselibrary{skins}
|
||||
\newtcolorbox{note}[1][]{%
|
||||
enhanced jigsaw,
|
||||
colback=gray!20!white,%
|
||||
colframe=gray!80!black,
|
||||
size=small,
|
||||
boxrule=1pt,
|
||||
title=\textbf{Bemerkung:-},
|
||||
halign title=flush center,
|
||||
coltitle=black,
|
||||
breakable,
|
||||
drop shadow=black!50!white,
|
||||
attach boxed title to top left={xshift=1cm,yshift=-\tcboxedtitleheight/2,yshifttext=-\tcboxedtitleheight/2},
|
||||
minipage boxed title=2.5cm,
|
||||
boxed title style={%
|
||||
colback=white,
|
||||
size=fbox,
|
||||
boxrule=1pt,
|
||||
boxsep=2pt,
|
||||
underlay={%
|
||||
\coordinate (dotA) at ($(interior.west) + (-0.5pt,0)$);
|
||||
\coordinate (dotB) at ($(interior.east) + (0.5pt,0)$);
|
||||
\begin{scope}
|
||||
\clip (interior.north west) rectangle ([xshift=3ex]interior.east);
|
||||
\filldraw [white, blur shadow={shadow opacity=60, shadow yshift=-.75ex}, rounded corners=2pt] (interior.north west) rectangle (interior.south east);
|
||||
\end{scope}
|
||||
\begin{scope}[gray!80!black]
|
||||
\fill (dotA) circle (2pt);
|
||||
\fill (dotB) circle (2pt);
|
||||
\end{scope}
|
||||
},
|
||||
},
|
||||
#1,
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% SELF MADE COMMANDS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\newcommand{\thm}[2]{\begin{Theorem}{#1}{}#2\end{Theorem}}
|
||||
\newcommand{\cor}[2]{\begin{Corollary}{#1}{}#2\end{Corollary}}
|
||||
\newcommand{\mlenma}[2]{\begin{Lenma}{#1}{}#2\end{Lenma}}
|
||||
\newcommand{\mprop}[2]{\begin{Prop}{#1}{}#2\end{Prop}}
|
||||
\newcommand{\clm}[3]{\begin{Claim}{#1}{#2}#3\end{Claim}}
|
||||
\newcommand{\wc}[2]{\begin{wconc}{#1}{}\setlength{\parindent}{1cm}#2\end{wconc}}
|
||||
\newcommand{\thmcon}[1]{\begin{Theoremcon}{#1}\end{Theoremcon}}
|
||||
\newcommand{\ex}[2]{\begin{Example}{#1}{}#2\end{Example}}
|
||||
\newcommand{\dfn}[2]{\begin{Definition}[colbacktitle=red!75!black]{#1}{}#2\end{Definition}}
|
||||
\newcommand{\dfnc}[2]{\begin{definition}[colbacktitle=red!75!black]{#1}{}#2\end{definition}}
|
||||
\newcommand{\qs}[2]{\begin{question}{#1}{}#2\end{question}}
|
||||
\newcommand{\pf}[2]{\begin{myproof}[#1]#2\end{myproof}}
|
||||
\newcommand{\nt}[1]{\begin{note}#1\end{note}}
|
||||
|
||||
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{
|
||||
Wrong Concept \node[shape=circle,draw,inner sep=1pt] (char) {#1};}}
|
||||
\newcommand\getcurrentref[1]{%
|
||||
\ifnumequal{\value{#1}}{0}
|
||||
{??}
|
||||
{\the\value{#1}}%
|
||||
}
|
||||
\newcommand{\getCurrentSectionNumber}{\getcurrentref{section}}
|
||||
\newenvironment{myproof}[1][\proofname]{%
|
||||
\proof[\bfseries #1: ]%
|
||||
}{\endproof}
|
||||
|
||||
\newcommand{\mclm}[2]{\begin{myclaim}[#1]#2\end{myclaim}}
|
||||
\newenvironment{myclaim}[1][\claimname]{\proof[\bfseries #1: ]}{}
|
||||
|
||||
\newcounter{mylabelcounter}
|
||||
|
||||
\makeatletter
|
||||
\newcommand{\setword}[2]{%
|
||||
\phantomsection
|
||||
#1\def\@currentlabel{\unexpanded{#1}}\label{#2}%
|
||||
}
|
||||
\makeatother
|
||||
|
||||
|
||||
|
||||
|
||||
\tikzset{
|
||||
symbol/.style={
|
||||
draw=none,
|
||||
every to/.append style={
|
||||
edge node={node [sloped, allow upside down, auto=false]{$#1$}}}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
% deliminators
|
||||
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
|
||||
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}
|
||||
|
||||
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
|
||||
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
||||
\DeclarePairedDelimiter{\round}{\lfloor}{\rceil}
|
||||
|
||||
\newsavebox\diffdbox
|
||||
\newcommand{\slantedromand}{{\mathpalette\makesl{d}}}
|
||||
\newcommand{\makesl}[2]{%
|
||||
\begingroup
|
||||
\sbox{\diffdbox}{$\mathsurround=0pt#1\mathrm{#2}$}%
|
||||
\pdfsave
|
||||
\pdfsetmatrix{1 0 0.2 1}%
|
||||
\rlap{\usebox{\diffdbox}}%
|
||||
\pdfrestore
|
||||
\hskip\wd\diffdbox
|
||||
\endgroup
|
||||
}
|
||||
\newcommand{\dd}[1][]{\ensuremath{\mathop{}\!\ifstrempty{#1}{%
|
||||
\slantedromand\@ifnextchar^{\hspace{0.2ex}}{\hspace{0.1ex}}}%
|
||||
{\slantedromand\hspace{0.2ex}^{#1}}}}
|
||||
\ProvideDocumentCommand\dv{o m g}{%
|
||||
\ensuremath{%
|
||||
\IfValueTF{#3}{%
|
||||
\IfNoValueTF{#1}{%
|
||||
\frac{\dd #2}{\dd #3}%
|
||||
}{%
|
||||
\frac{\dd^{#1} #2}{\dd #3^{#1}}%
|
||||
}%
|
||||
}{%
|
||||
\IfNoValueTF{#1}{%
|
||||
\frac{\dd}{\dd #2}%
|
||||
}{%
|
||||
\frac{\dd^{#1}}{\dd #2^{#1}}%
|
||||
}%
|
||||
}%
|
||||
}%
|
||||
}
|
||||
\providecommand*{\pdv}[3][]{\frac{\partial^{#1}#2}{\partial#3^{#1}}}
|
||||
% - others
|
||||
\DeclareMathOperator{\Lap}{\mathcal{L}}
|
||||
\DeclareMathOperator{\Var}{Var} % varience
|
||||
\DeclareMathOperator{\Cov}{Cov} % covarience
|
||||
\DeclareMathOperator{\E}{E} % expected
|
||||
|
||||
% Since the amsthm package isn't loaded
|
||||
|
||||
% I prefer the slanted \leq
|
||||
\let\oldleq\leq % save them in case they're every wanted
|
||||
\let\oldgeq\geq
|
||||
\renewcommand{\leq}{\leqslant}
|
||||
\renewcommand{\geq}{\geqslant}
|
||||
|
||||
% % redefine matrix env to allow for alignment, use r as default
|
||||
% \renewcommand*\env@matrix[1][r]{\hskip -\arraycolsep
|
||||
% \let\@ifnextchar\new@ifnextchar
|
||||
% \array{*\c@MaxMatrixCols #1}}
|
||||
|
||||
|
||||
%\usepackage{framed}
|
||||
%\usepackage{titletoc}
|
||||
%\usepackage{etoolbox}
|
||||
%\usepackage{lmodern}
|
||||
|
||||
|
||||
%\patchcmd{\tableofcontents}{\contentsname}{\sffamily\contentsname}{}{}
|
||||
|
||||
%\renewenvironment{leftbar}
|
||||
%{\def\FrameCommand{\hspace{6em}%
|
||||
% {\color{myyellow}\vrule width 2pt depth 6pt}\hspace{1em}}%
|
||||
% \MakeFramed{\parshape 1 0cm \dimexpr\textwidth-6em\relax\FrameRestore}\vskip2pt%
|
||||
%}
|
||||
%{\endMakeFramed}
|
||||
|
||||
%\titlecontents{chapter}
|
||||
%[0em]{\vspace*{2\baselineskip}}
|
||||
%{\parbox{4.5em}{%
|
||||
% \hfill\Huge\sffamily\bfseries\color{myred}\thecontentspage}%
|
||||
% \vspace*{-2.3\baselineskip}\leftbar\textsc{\small\chaptername~\thecontentslabel}\\\sffamily}
|
||||
%{}{\endleftbar}
|
||||
%\titlecontents{section}
|
||||
%[8.4em]
|
||||
%{\sffamily\contentslabel{3em}}{}{}
|
||||
%{\hspace{0.5em}\nobreak\itshape\color{myred}\contentspage}
|
||||
%\titlecontents{subsection}
|
||||
%[8.4em]
|
||||
%{\sffamily\contentslabel{3em}}{}{}
|
||||
%{\hspace{0.5em}\nobreak\itshape\color{myred}\contentspage}
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TABLE OF CONTENTS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\usepackage{tikz}
|
||||
\definecolor{doc}{RGB}{0,60,110}
|
||||
\usepackage{titletoc}
|
||||
\contentsmargin{0cm}
|
||||
\titlecontents{chapter}[3.7pc]
|
||||
{\addvspace{30pt}%
|
||||
\begin{tikzpicture}[remember picture, overlay]%
|
||||
\draw[fill=doc!60,draw=doc!60] (-7,-.1) rectangle (-0.9,.5);%
|
||||
\pgftext[left,x=-3.5cm,y=0.2cm]{\color{white}\Large\sc\bfseries Chapter\ \thecontentslabel};%
|
||||
\end{tikzpicture}\color{doc!60}\large\sc\bfseries}%
|
||||
{}
|
||||
{}
|
||||
{\;\titlerule\;\large\sc\bfseries Page \thecontentspage
|
||||
\begin{tikzpicture}[remember picture, overlay]
|
||||
\draw[fill=doc!60,draw=doc!60] (2pt,0) rectangle (4,0.1pt);
|
||||
\end{tikzpicture}}%
|
||||
\titlecontents{section}[3.7pc]
|
||||
{\addvspace{2pt}}
|
||||
{\contentslabel[\thecontentslabel]{2pc}}
|
||||
{}
|
||||
{\hfill\small \thecontentspage}
|
||||
[]
|
||||
\titlecontents*{subsection}[3.7pc]
|
||||
{\addvspace{-1pt}\small}
|
||||
{}
|
||||
{}
|
||||
{\ --- \small\thecontentspage}
|
||||
[ \textbullet\ ][]
|
||||
|
||||
\makeatletter
|
||||
\renewcommand{\tableofcontents}{%
|
||||
\chapter*{%
|
||||
\vspace*{-20\p@}%
|
||||
\begin{tikzpicture}[remember picture, overlay]%
|
||||
\pgftext[right,x=15cm,y=0.2cm]{\color{doc!60}\Huge\sc\bfseries \contentsname};%
|
||||
\draw[fill=doc!60,draw=doc!60] (13,-.75) rectangle (20,1);%
|
||||
\clip (13,-.75) rectangle (20,1);
|
||||
\pgftext[right,x=15cm,y=0.2cm]{\color{white}\Huge\sc\bfseries \contentsname};%
|
||||
\end{tikzpicture}}%
|
||||
\@starttoc{toc}}
|
||||
\makeatother
|
@@ -0,0 +1 @@
|
||||
\chapter{Singulärwertzerlegung}
|
16
hs24/lineare_algebra/sources.bib
Normal file
@@ -0,0 +1,16 @@
|
||||
@misc{Gradinaru2024,
|
||||
author = {Gradinaru, Prof. Dr. ,Vasile},
|
||||
month = nov,
|
||||
title = {{Lineare Algebra}},
|
||||
year = {2024},
|
||||
}
|
||||
|
||||
@software{MCD2024,
|
||||
author = {{The Manim Community Developers}},
|
||||
license = {MIT},
|
||||
month = apr,
|
||||
title = {{Manim - Mathematical Animation Framework}},
|
||||
url = {https://www.manim.community/},
|
||||
version = {v0.18.1},
|
||||
year = {2024},
|
||||
}
|