Exercise 8
Added Exercise 8 to repository
This commit is contained in:
parent
c71d2e026f
commit
2792a87c95
65
Informatik_I/Exercise_8/Task_1/README.org
Normal file
65
Informatik_I/Exercise_8/Task_1/README.org
Normal file
@ -0,0 +1,65 @@
|
||||
#+title: Task 1: Reverse Digits
|
||||
|
||||
#+author: JirR02
|
||||
* Task
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: task
|
||||
:END:
|
||||
The goal of this task is to implement a program to read a number and
|
||||
print its reverse.
|
||||
|
||||
You should complete the implementation of the reverse function in
|
||||
=reverse.cpp=. This function gets an =int= as input parameter, and it
|
||||
should print the digits of the number in reverse.
|
||||
|
||||
The =reverse= function must be implemented recursively (without any
|
||||
loop). To enforce this, we disallow the use of =for= or =while=.
|
||||
|
||||
* Input
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: input
|
||||
:END:
|
||||
The input is a single non-negative =int= number.
|
||||
|
||||
An input example:
|
||||
|
||||
#+begin_src shell
|
||||
321231
|
||||
#+end_src
|
||||
|
||||
* Output
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: output
|
||||
:END:
|
||||
For the above input, the output should be:
|
||||
|
||||
#+begin_src shell
|
||||
132123
|
||||
#+end_src
|
||||
|
||||
Note: You are not allowed to use the string library to solve this task!
|
||||
|
||||
* Solution
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: solution
|
||||
:END:
|
||||
#+begin_src cpp
|
||||
#include "reverse.h"
|
||||
#include <iostream>
|
||||
|
||||
// PRE: n >= 0
|
||||
// POST: print the digits of the input in reverse order to std::cout
|
||||
void reverse(int n) {
|
||||
|
||||
int res = n % 10;
|
||||
std::cout << res;
|
||||
|
||||
int new_int = n / 10;
|
||||
|
||||
if (new_int == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
reverse(new_int);
|
||||
}
|
||||
#+end_src
|
119
Informatik_I/Exercise_8/Task_2/README.org
Normal file
119
Informatik_I/Exercise_8/Task_2/README.org
Normal file
@ -0,0 +1,119 @@
|
||||
#+title: Task 2: Set Product
|
||||
|
||||
#+author: JirR02
|
||||
* Task
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: task
|
||||
:END:
|
||||
In this exercise, you are going to implement a function which computes
|
||||
the /n-fold Cartesian product/ for sets. The n-fold Cartesian product is
|
||||
a way to combine multiple sets of items. Imagine you have multiple sets,
|
||||
denoted as \(A_1, A_2, ..., A_n\). The n-fold Cartesian product is like
|
||||
taking one item from each set and combining them into a new set.
|
||||
|
||||
For example, let's say you have two sets:
|
||||
|
||||
\[
|
||||
A_1 = \{a,b,c\} \text{ and } A_2 = \{ x, y, z \}
|
||||
\]
|
||||
|
||||
The Cartesian product of these two sets would be a new set that contains
|
||||
all possible combinations of one item from \(A_1\) and one item from
|
||||
\(A_2\):
|
||||
|
||||
\[
|
||||
A_1 \times A_2 = \{(a,x),(a,y),(a,z),(b,x),(b,y),(b,z),(c,x),(c,y),(c,z)\}
|
||||
\]
|
||||
|
||||
In general, for any two sets \(A\) and \(B\), the Cartesian product
|
||||
\(A times B\) is defined as:
|
||||
|
||||
\[
|
||||
A \times B \{(a,b) | a \in A \text{ and } b \in B\}
|
||||
\]
|
||||
|
||||
This can be generalized to the n-fold Cartesian product. For any \(n\)
|
||||
sets \(A_1, A_2, ... , A_n\), the n-fold Cartesian product is defined
|
||||
as:
|
||||
|
||||
\[
|
||||
A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i \text{ for all } i = 1, 2, ... , n\}
|
||||
\]
|
||||
|
||||
Note: This task naturally lends itself to a *recursive implementation*.
|
||||
|
||||
** The Set class
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: the-set-class
|
||||
:END:
|
||||
A set class is implemented in =set.h= and =set.ipp=. This class
|
||||
implements a number of useful operations on sets. *For an overview of
|
||||
its functionalities, please refer to this week's Power Set code
|
||||
example*. Note that you do not need to understand any of the code in
|
||||
=set.h= and =set.ipp= in order to use it!
|
||||
|
||||
* Input & Output
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: input-output
|
||||
:END:
|
||||
When the program starts, you are first prompted to enter the number of
|
||||
sets. Then, you are prompted to enter each set. Sets are entered on a
|
||||
single line using the format
|
||||
=<number of char elements> <elements separated by spaces>=.
|
||||
|
||||
Once all sets are entered, the set product is computed using the
|
||||
=set_product= function. Finally, the resulting set is printed to the
|
||||
console.
|
||||
|
||||
*** Example
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: example
|
||||
:END:
|
||||
#+begin_src shell
|
||||
Number of sets: 2
|
||||
Set 0: 3 a b c
|
||||
Set 1: 2 x y
|
||||
Product Set:
|
||||
{ax,ay,bx,by,cx,cy}
|
||||
#+end_src
|
||||
|
||||
*Note*: Each input set is a set of char elements. At least 1 set must be
|
||||
inputted.
|
||||
|
||||
* Solution
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: solution
|
||||
:END:
|
||||
#+begin_src cpp
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "set.h"
|
||||
#include "solution.h"
|
||||
|
||||
StringSet set_product(const std::vector<CharSet> &sets) {
|
||||
StringSet res;
|
||||
StringSet ram;
|
||||
if (sets.size() == 1) {
|
||||
for (int i = 0; i < sets[0].size(); ++i) {
|
||||
std::string j(1, sets[0][i]);
|
||||
res.insert(j);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
CharSet first_subset = sets[0];
|
||||
std::vector<CharSet> remaining_set(sets.begin() + 1, sets.end());
|
||||
|
||||
StringSet res_subset = set_product(remaining_set);
|
||||
|
||||
for (char char_first_subset : first_subset.elements()) {
|
||||
for (std::string str_res_subset : res_subset.elements()) {
|
||||
res.insert(std::string(1, char_first_subset) + str_res_subset);
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
#+end_src
|
81
Informatik_I/Exercise_8/Task_3/README.org
Normal file
81
Informatik_I/Exercise_8/Task_3/README.org
Normal file
@ -0,0 +1,81 @@
|
||||
#+title: Task 3: All permutations
|
||||
|
||||
#+author: JirR02
|
||||
* Task
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: task
|
||||
:END:
|
||||
In this exercise, you are going to implement a function which computes
|
||||
the set of all permutations of a given string.
|
||||
|
||||
Note: This task naturally lends itself to a *recursive implementation*.
|
||||
|
||||
** Example
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: example
|
||||
:END:
|
||||
The string "abc" has the following set of permutations:
|
||||
|
||||
{ abc, acb, bac, bca, cab, cba }
|
||||
|
||||
** The Set class
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: the-set-class
|
||||
:END:
|
||||
A set class is implemented in =set.h= and =set.ipp=. This class
|
||||
implements a number of useful operations on sets. *For an overview of
|
||||
its functionalities, please refer to the Power Set code example*. Note
|
||||
that you do not need to understand any of the code in =set.h= and
|
||||
=set.ipp= in order to use it!
|
||||
|
||||
* Input & Output
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: input-output
|
||||
:END:
|
||||
When the program starts, you are first prompted to enter a string.
|
||||
|
||||
Then, the program computes the set of all permutations using the
|
||||
function *all_permutations*. Finally, the resulting set is printed to
|
||||
the console.
|
||||
|
||||
*** Example
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: example-1
|
||||
:END:
|
||||
#+begin_src shell
|
||||
String: abc
|
||||
Permutations:
|
||||
{abc,acb,bac,bca,cab,cba}
|
||||
#+end_src
|
||||
|
||||
Hint: You may find the substr method useful. The method is documented
|
||||
here.
|
||||
|
||||
* Solution
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: solution
|
||||
:END:
|
||||
#+begin_src cpp
|
||||
#include "pair_sum.h"
|
||||
#include <climits>
|
||||
|
||||
// PRE: for any two indices i and j, v[i] + v[j] ≤ INT_MAX
|
||||
// POST: returns the number of indices (i,j), i<j of a vector v
|
||||
// that corresponds to the given iterator range such that
|
||||
// v[i] + v[j] == sum.
|
||||
int pairs_with_sum(int sum, iterator begin, iterator end) {
|
||||
int count = 0;
|
||||
int size = end - begin;
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
for (int j = i + 1; j < size; ++j) {
|
||||
iterator cur_begin = begin + i;
|
||||
iterator cur_end = begin + j;
|
||||
if (*cur_begin + *cur_end == sum)
|
||||
++count;
|
||||
}
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
#+end_src
|
118
Informatik_I/Exercise_8/Task_4/README.org
Normal file
118
Informatik_I/Exercise_8/Task_4/README.org
Normal file
@ -0,0 +1,118 @@
|
||||
#+title: Task 4: Dual Numbers
|
||||
|
||||
#+author: JirR02
|
||||
* Dual Numbers
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: dual-numbers
|
||||
:END:
|
||||
In this task, you are required to implement a basic version of /dual
|
||||
number/. Dual numbers are conceptually similar to complex number.
|
||||
|
||||
A dual numbers \(n\) is of the following form:
|
||||
|
||||
\[
|
||||
z = a + \epsilon b
|
||||
\]
|
||||
|
||||
with the following identity:
|
||||
|
||||
\[
|
||||
\epsilon ^2 = 0
|
||||
\]
|
||||
|
||||
Adding two dual numbers is done component-wise:
|
||||
|
||||
\[
|
||||
(a + \epsilon b) + (c + \epsilon d) + (a+c) + \epsilon (b + d)
|
||||
\]
|
||||
|
||||
Subtracting two dual numbers is also done component-wise:
|
||||
|
||||
\[
|
||||
(a + \epsilon b) - (c + \epsilon d) = (a + \epsilon b) + (-c - \epsilon d) = (a - c) + \epsilon(b - d)
|
||||
\]
|
||||
|
||||
Using the identity above, multiplying two dual numbers gives
|
||||
|
||||
\[
|
||||
(a + \epsilon b)(c + \epsilon d) = ac + \epsilon(ad + bc)
|
||||
\]
|
||||
|
||||
** Tasks
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: tasks
|
||||
:END:
|
||||
You are required to extend the provided implementation of dual numbers
|
||||
by adding the implementation for various arithmetic operators in
|
||||
=DualNumber.cpp=.
|
||||
|
||||
*** Task 1: Addition operator
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: task-1-addition-operator
|
||||
:END:
|
||||
Implement the addition operator
|
||||
|
||||
#+begin_src shell
|
||||
DualNumber operator+(const DualNumber& dn1, const DualNumber& dn2)
|
||||
#+end_src
|
||||
|
||||
in file =DualNumber.cpp=.
|
||||
|
||||
*** Task 2: Subtraction operator
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: task-2-subtraction-operator
|
||||
:END:
|
||||
Implement the subtraction operator
|
||||
|
||||
#+begin_src shell
|
||||
DualNumber operator-(const DualNumber& dn1, const DualNumber& dn2)
|
||||
#+end_src
|
||||
|
||||
in file =DualNumber.cpp=.
|
||||
|
||||
*** Task 3: Multiplication operator
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: task-3-multiplication-operator
|
||||
:END:
|
||||
Implement the multiplication operator
|
||||
|
||||
#+begin_src shell
|
||||
DualNumber operator*(const DualNumber& dn1, const DualNumber& dn2)
|
||||
#+end_src
|
||||
|
||||
in file =DualNumber.cpp=.
|
||||
|
||||
* Solution
|
||||
:PROPERTIES:
|
||||
:CUSTOM_ID: solution
|
||||
:END:
|
||||
#+begin_src cpp
|
||||
#include "DualNumber.h"
|
||||
|
||||
DualNumber operator+(const DualNumber &dn1, const DualNumber &dn2) {
|
||||
DualNumber res;
|
||||
double a = dn1.a + dn2.a;
|
||||
double b = dn1.b + dn2.b;
|
||||
res.a = a;
|
||||
res.b = b;
|
||||
return res;
|
||||
}
|
||||
|
||||
DualNumber operator-(const DualNumber &dn1, const DualNumber &dn2) {
|
||||
DualNumber res;
|
||||
double a = dn1.a - dn2.a;
|
||||
double b = dn1.b - dn2.b;
|
||||
res.a = a;
|
||||
res.b = b;
|
||||
return res;
|
||||
}
|
||||
|
||||
DualNumber operator*(const DualNumber &dn1, const DualNumber &dn2) {
|
||||
DualNumber res;
|
||||
double a = dn1.a * dn2.a;
|
||||
double b = (dn1.a * dn2.b) + (dn1.b * dn2.a);
|
||||
res.a = a;
|
||||
res.b = b;
|
||||
return res;
|
||||
}
|
||||
#+end_src
|
Loading…
x
Reference in New Issue
Block a user