Komplexe Analysis

von P.Bölsterli. Fehler bitte an pholsterli@student.ethz.ch

Komplexe Zahlen

Normalform

$$\mathbb{C} := \{a+ib: a, b \in \mathbb{R}\}$$
 wobei $i = \sqrt{-1}$

Sei $z \in \mathbb{C}$ mit z = a + ib. Es gelten folgende Rechenregel:

$\operatorname{Re}(z) = a = \frac{z + \overline{z}}{2}$
$Re(z) = a = \frac{z + \overline{z}}{2}$ $Im(z) = b = \frac{z - \overline{z}}{2i}$
$\overline{z} = a - ib$
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$
$z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + i(a_2 b_1 + a_1 b_2)$
$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}$
$ z_1 + z_2 \le z_1 + z_2 $
$ z = \sqrt{z\overline{z}} = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$
$ z_1\cdot z_2 = z_1 \cdot z_2 $
$\varphi = \arctan\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)$

Eulersche Formel und Eulers Identität

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

$$e^{i\pi} = -1$$

$$e^{2\pi i}=1$$

Trigonometrische- und Hyperbelfunktionen

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\sinh(z) = \frac{e^{z} - e^{-z}}{2}$$

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

$$\tan(z) = \frac{\sin(z)}{\cos(z)}$$

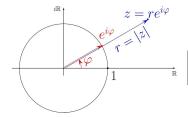
$$\tanh(z) = \frac{\sinh(z)}{\cosh(z)}$$

Trigonometrische Funktionen: Wertetabelle

Die Sinus- und Cosninusfunktionen sind beide 2π -periodisch.

\deg/rad	0°/0	$30^{\circ}/\frac{\pi}{6}$	$45^{\circ}/\frac{\pi}{4}$	$60^{\circ}/\frac{\pi}{3}$	$90^{\circ}/\frac{\pi}{2}$
sin	0	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{1}}{2}}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-
deg/rad	120°/	$\frac{2\pi}{3}$ 135	$\circ / \frac{3\pi}{4}$	$150^{\circ} / \frac{5\pi}{6}$	180°/π
deg/rad	$\frac{120^{\circ}}{\frac{\sqrt{3}}{2}}$	$\frac{2\pi}{3}$ 135	$\frac{6}{4}$	$\frac{150^{\circ}/\frac{5\pi}{6}}{\frac{1}{2}}$	$\frac{180^{\circ}/\pi}{0}$
		$\frac{2\pi}{3}$ 135	$ \begin{array}{c c} \circ / \frac{3\pi}{4} & \overline{} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{\sqrt{3}} \end{array} $	$150^{\circ} / \frac{5\pi}{6}$ $-\frac{\frac{1}{2}}{2}$	$ \begin{array}{c} 180^{\circ}/\pi \\ 0 \\ -1 \end{array} $

Polarform



Die Polarform lautet:

$$z = |z| \cdot e^{i\varphi}$$
$$= |z| \cdot (\cos \varphi + i \sin \varphi)$$

Die Exponentialfunktion ist $2\pi i$ -periodisch, deswegen wird definiert:

Argument	$arg(z) = \{ \varphi + 2k\pi, k \in \mathbb{Z} \}$
Hauptwert des Argument	$Arg(z) = \varphi \in (-\pi, \pi]$

Rechenregeln in der Polarform (Exponentialform)

$$\begin{aligned} \text{Realteil} & & \text{Re}(z) = \cos(\varphi) \\ & & \text{Imaginärteil} & & \text{Im}(z) = \sin(\varphi) \end{aligned}$$
 Komplex Konjugation $\overline{z} = |z|e^{-i\varphi} = |z|\cdot(\cos\varphi - i\sin\varphi)$

Multiplikation
$$z_1 \cdot z_2 = |z_1| \cdot |z_2| e^{i(\varphi_1 + \varphi_2)}$$

Division $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot e^{i(\varphi_1 - \varphi_2)}$

Potenzieren
$$(|z|e^{i\varphi})^n = |z|^n \cdot e^{i(n\cdot\varphi)}$$

n-te Wurzel $\sqrt[n]{z} = \sqrt[n]{|z|} \cdot e^{i(\frac{\varphi}{n} + \frac{2\pi k}{n})}, k = 0, \dots, n-1$

Logarithmus
$$\log(z) = \log|z| + i(\varphi + 2\pi k)$$

Hauptwert des Log Log
$$(z) = \log |z| + i\varphi$$

Potenzen mit
$$z, w \in \mathbb{C}$$
 $z^w := e^{w \cdot \log(z)}$

Hauptwert der Potenz
$$p.v.(z^w) = e^{w \cdot \text{Log}(z)}$$

Logarithmusgesetze gelten nicht beim komplexwertigen Logarithmus!

Komplexe Folgen und Reihen

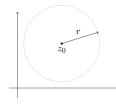
Sei eine komplexe Folge $(z_n = x_n + iy_n)$. Der Grenzwert existiert, wenn

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y \Rightarrow \lim_{n \to \infty} z_n = x + iy$$

Absoluten Konvergenz gilt auch für komplexwertige Reihen, solange man den komplexen Absolutbetrag nimmt.

Offene Kreisscheibe

Die offene Kreisscheibe mit Zentrum $z_0 \in \mathbb{C}$ und Radius $r \in \mathbb{R}^+$ ist:



$$B(z_0, r) := \{ z \in \mathbb{C} : |z - z_0| < r \}$$

Sei $z_0 = x_0 + i y_0$. Dann ist eine äquivalente Kreisgleichung:

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

Fundamentalsatz der Algebra

Jedes Polynom vom Grad g hat genau g Nullstellen. Falls ein Polynom eine komplexe Nullstelle z_0 besitzt, dann ist $\overline{z_0}$ auch eine Nullstelle.

Mitternachtsformel

Die Nullstellen eines Polynom zweiter Ordnung $(az^2 + bz + c = 0)$ sind:

$$z_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b}{2a} \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

Binomische Formeln

$$z^{2} = (a+ib)^{2} = a^{2} - b^{2} + i2ab$$

$$z^{3} = (a+ib)^{3} = a^{3} - 3ab^{2} + i(3a^{2}b - b^{3})$$

$$z^{4} = (a+ib)^{4} = a^{4} - 6a^{2}b^{2} + b^{4} + i(4a^{3}b - 4ab^{3})$$

Grenzwert einer Funktion

Sei $f: U \setminus \{z_0\} \to \mathbb{C}$ eine Funktion, wobei $U \subset \mathbb{C}$ und $z_0 \in U$. Der Grenzwert von $f(z_0)$ ist $\lim_{z \to z_0} f(z) = a$, falls

$$\forall \epsilon > 0 \ \exists \delta > 0, \ \text{s.d.} \ \forall z \in U : |z - z_0| < \delta \Rightarrow |f(z) - a| < \epsilon$$

Bemerkung: Sei $a = a_1 + ia_2 \in \mathbb{C}$. Dann gilt

$$\lim_{z\to z_0} f(z) = a \Leftrightarrow \left(\lim_{z\to z_0} \mathrm{Re}(f(z)) = a_1\right) \wedge \left(\lim_{z\to z_0} \mathrm{Im}(f(z)) = a_2\right)$$

Stetigkeit

Sei eine offene Menge $U\in\mathbb{C}$ und $f:U\to\mathbb{C}.$ f(z) ist stetig im Punkt $z_0\in U,$ genau dann wenn

$$\lim_{z \to z_0} f(z) = f(z_0)$$

f(z) ist auf U stetig, falls f(z) an jeder Stelle $z_0 \in U$ stetig ist.

- i) Summe, Differenz und Produkt stetiger Funktionen sind stetig.
- ii) Komposition von stetigen Funktionen ist stetig.
- iii) Eine Funktion ist genau dann stetig, wenn sowohl Realteil als auch Imaginärteil stetig sind.

Zeigen von Stetigkeit

Falls f an der Stelle z_0 stetig ist, gilt $\forall w \in \mathbb{C}$: $\lim_{t \to 0} f(z_0 + tw) = f(z_0)$ Mit dem Kontrapositiv zeigt man oft, dass f an z_0 nicht stetig ist:

- i) Um zu zeigen, dass f an der Stelle z_0 nicht stetig ist, muss man eine Richtung finden, in der f nicht stetig ist.
 - Oder man muss zwei Richtungen finden, auf denen die Grenzwerte unterschiedlich sind.
- ii) Um die Stetigkeit einer Funktion an Stelle z_0 zu zeigen, benutzt man oft die Polarkoordinanten $z=re^{it}$. Falls $\lim_{r\to r_0}$ unabhängig von t existiert, dann ist f stetig in z_0 .

C-Differenzierbarkeit und Holomorph

Man kann eine komplexwertige Funktion als zwei reellwertige Funktionen darstellen:

$$f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

C-Differenzierbarkeit

Sei eine offene Menge $U \subseteq \mathbb{C}$ und $f: U \to \mathbb{C}$ stetig. f ist \mathbb{C} -differenzierbar in $z_0 \in U$ falls folgender Grenzwert existiert:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

Bem: \mathbb{R} -Differenzierbarkeit in z_0 ist notwendig für \mathbb{C} -Differenzierbarkeit.

Satz

f(z) ist \mathbb{C} -differenzierbar $\Rightarrow f(z)$ ist stetig.

Rechenregeln Ableitung

Linearität: $(\alpha f + \beta g)' = \alpha f' + \beta g'$

Produktregel: $(f \cdot q)' = f' \cdot q + f \cdot q'$

Quotienten regel: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$

Kettenregel: $(f(g(z)))' = f'(g(z)) \cdot g'(z)$

Potenzreihen (*): $\left(\sum_{n=0}^{\infty} c_n (z-z_0)^n\right)' = \sum_{n=0}^{\infty} n c_n (z-z_0)^{n-1}$

Bem (*): Potenzreihen nur innerhalb Konvergenzradius differenzierbar!

Partielle Ableitung

Partielle Ableitung von f(z) nach x an der Stelle x_0, y_0 :

$$\frac{\partial f(x_0, y_0)}{\partial x} = \partial_x f = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

Partielle Ableitung nach y an der Stelle x_0, y_0 :

$$\frac{\partial f(x_0, y_0)}{\partial y} = \partial_y f = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

Holomorph

Sei eine offene Menge $U \subseteq \mathbb{C}$ und $f: U \to \mathbb{C}$.

- i) f heisst holomorph auf U, falls sie auf U \mathbb{C} -differenzierbar ist.
- ii) f heisst holomorph in z_0 , falls f holomorph in einer offenen Menge $U_1 \ni z_0$ ist.
- iii) Eine holomorphe Funktion ist beliebig oft C-differenzierbar und lässt sich als eine Potenzreihe entwickeln.
- iv) Eine ganze Funktion ist eine Funktion, die auf \mathbb{C} holomorph ist.

Bem: Falls die Funktion \overline{z} enthält, ist die Funktion **nie** holomorph.

Cauchy-Riemann Gleichungen (CRG)

Sei $f:U\to\mathbb{C}$ holomorph und f(x+iy)=u(x,y)+iv(x,y). So existieren Sei $U\subseteq\mathbb{C}$ offen, $f:U\to\mathbb{C}$ stetig und sei $\gamma:[0,1]\to U$ ein stückweise die partiellen Ableitungen an jeder Stelle $z_0 \in U$ und erfüllen die CRG: stetig differenzierbarer Pfad. Das Kurvenintegral von f entlang γ ist

$$\partial_x u(x_0, y_0) = \partial_y v(x_0, y_0) \quad \partial_y u(x_0, y_0) = -\partial_x v(x_0, y_0)$$

Kriterium für C-Differenzierbarkeit

Sei $f: U \to \mathbb{C}$ und sei $z_0 \in U$. Wenn folgende Bedingungen erfüllt sind:

- 1) $\partial_x u, \partial_y u, \partial_x v, \partial_y v$ existieren in einer offenen Menge um z_0 .
- 2) $\partial_x u, \partial_y u, \partial_x v, \partial_y v$ sind stetig in z_0 und erfüllen die CRG in z_0 .

Dann existiert $f'(z_0)$, d.h. f ist \mathbb{C} -differenzierbar in z_0 .

Konsequenzen der CRG

Sei $f, g: B(z_0, r) \to \mathbb{C}$ holomorph für $z_0 \in \mathbb{C}$ und r > 0.

- i) Falls Re(f) = u konstant ist, dann ist f auch konstant.
- ii) Sei Re(f) = Re(g). Dann gilt f = g + ic wobei $c \in \mathbb{R}$.
- iii) Falls $\overline{f}: B(z_0, r) \to \mathbb{C}$ holomorph ist, ist f konstant.
- iv) Falls |f(z)| konstant ist, ist f(z) konstant.

Sei $f:U\to\mathbb{C}$ holomorph. Dann gelten folgende Gleichungen

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Harmonische Funktionen

Eine Funktion $q:U\to\mathbb{R}$ heisst harmonisch auf U, wenn $U\subset\mathbb{R}^2$ und

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 0$$

Kurvenintegral

Sei $f:[a,b]\to\mathbb{C}$. So gilt: $\int\limits_a^b f(t)dt:=\int\limits_a^b \mathrm{Re}(f(t))dt+i\cdot\int\limits_a^b \mathrm{Im}(f(t))dt$

Pfade

Ein Pfad ist eine stetige Abbildung $\gamma:[a,b]\to\mathbb{C}.$ Eigenschaften:

- i) Ein Pfad ist einfach, falls aus $\gamma(t_1) = \gamma(t_2)$ folgt, dass $t_1 = t_2$ oder $\{t_1, t_2\} = \{a, b\}$. (Pfad ohne Selbstschnittpunkte)
- ii) Falls $\gamma(a) = \gamma(b)$ heisst der Pfad geschlossen.
- Der Pfad ist differenzierbar auf (a,b), wenn $\gamma'(t)$ für jedes $t \in (a, b)$ existiert. $\gamma'(t_0)$ heisst Tangentialvektor.

Parametrisierung

Gerade von a nach b: $\gamma(t) = (1-t) \cdot a + t \cdot b, t \in [0,1]$

Kreis mit Zentrum z_0 und Radius r im positiven Sinne/positive Umlaufrichtung (Gegenuhrzeigersinn): $\gamma(t) = z_0 + r \cdot e^{2\pi i t}, t \in [0, 1]$

Kurvenintegral

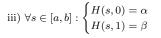
$$\int_{\gamma} f(z)dz := \int_{0}^{1} f(\gamma(t)) \cdot \dot{\gamma}(t)dt$$

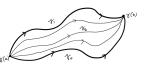
Homotopie

Sei $U \subseteq \mathbb{C}$ offen und $\gamma, \delta : [a, b] \to U$ zwei Pfade mit $\gamma(a) = \delta(a) = \alpha \in \mathbb{C}$ und $\gamma(b) = \delta(b) = \beta \in \mathbb{C}$. Man sagt γ ist homotop zu δ , falls

i) $H:[0,1]\times[a,b]\to U$ stückweise **stetig**

ii)
$$\forall t \in [a, b] : \begin{cases} H(0, t) = \gamma(t) \\ H(1, t) = \delta(t) \end{cases}$$





Die Funktion H ist die sogenannte Homotopie von γ und δ .

Parametrisierung durch s: $H(s,t) = (1-s) \cdot \gamma(t) + s \cdot \delta(t)$

Wegzusammenhängend

Eine Menge U heisst wegzusammenhängend, falls es für jedes Paar $z_1, z_2 \in U$ einen Pfad $\gamma(t)$ gibt, der die zwei Punkte verbindet.

Einfach zusammenhängend

Eine Teilmenge $U \subseteq \mathbb{C}$ heisst einfach zusammenhängend, falls sie wegzusammenhängend ist und für alle $\alpha, \beta \in U$ alle Pfade von α nach β homotop zu einander sind.

Hauptsatz der komplexen Integralrechnung

Sei $U \subseteq \mathbb{C}$ eine offene wegzusammenhängende Menge, $f: U \to \mathbb{C}$ stetig und $\gamma:[0,1]\to U.$ Dann sind folgende Aussagen äquivalent:

Für jede geschlossene Kurve $\gamma(t):[0,1]\to U$ gilt $\int_{\mathcal{C}} f(z)dz=0$.

- \Leftrightarrow Das Kurvenintegral $\int_{z} f(z)dz$ ist unabhängig vom Pfad.
- \Leftrightarrow Es gibt eine C-diffbare Funktion $F: U \to \mathbb{C}$ mit F'(z) = f(z)
- \Leftrightarrow F ist eine Stammfunktion von f und

$$\int_{\gamma} f(z)dz = F(\gamma(1)) - F(\gamma(0))$$

Bem: Eine Stammfunktion ist eindeutig bis auf eine Konstante $c \in \mathbb{C}$.

Integralsatz von Cauchy

Sei $U\subseteq\mathbb{C}$ eine einfache zusammenhängende offene Teilmenge und $f: U \to \mathbb{C}$ eine holomorphe Funktion. Dann gilt:

> f besitzt eine Stammfunktion F und die dazu äquivalenten Eigenschaften.

Eigenschaften des Kurvenintegrals

Für KI1-KI4: Sei $\gamma:[0,1]\to U$ ein Pfad und $f:U\to\mathbb{C}$ stetig. Zusätzlich für KI5-KI7: Sei $U\subset\mathbb{C}$ eine offene wegzusammenhängende Menge.

KI1 (Linearität): Seien $\alpha, \beta \in \mathbb{C}$. Es gilt

$$\int_{\gamma} [\alpha f(z) + \beta g(z)] dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$$

KI2 (Umkehrrichtung): Sei $\delta:[0,1]\to U$ mit $\delta(t):=\gamma(1-t).$ Dann gilt

$$\int_{\delta} f(z)dz = -\int_{\gamma} f(z)dz$$

und man schreibt $\delta = \gamma^{-1}$ oder $\delta = -\gamma$.

KI3 (Verkettung): Sei δ : [0, 1] ein Pfad mit $\gamma(1) = \delta(0)$. Dann ist

$$\gamma * \delta(t) := \begin{cases} y(2t) & t \in [0, \frac{1}{2}] \\ \delta(2t-1) & t \in (\frac{1}{2}, 1] \end{cases}$$

die Verkettung **und** es gilt
$$\int_{\gamma*\delta} f(z)dz = \int_{\gamma} f(z)dz + \int_{\delta} f(z)dz$$
.

KI4 (Unabhängigkeit der Parametrisierung): Sei $\delta:[0,1]\to U$ eine andere Parametrisierung des Bildes von γ . Dann gilt:

$$\int_{\delta} f(z)dz = \int_{\gamma} f(z)dz$$

KI5 (Cauchy Schwarz): Sei $\gamma:[a,b]\to U$ ein Pfad. Es gilt

$$\left| \int_{a}^{b} f(\gamma(t)) \cdot \dot{\gamma}(t) dt \right| \leq \int_{a}^{b} |f(\gamma(t)) \cdot \dot{\gamma}(t)| dt$$

KI6 (Standardabschätzung): Sei $L(\gamma) := \int_a^b |\dot{\gamma}(t)| dt$ die Länge vom Pfad γ . Wenn $|f(z)| \leq M$ für jedes $z \in U$ gilt, dann folgt

$$\left| \int\limits_{\gamma} f(z)dz \right| \leq M \cdot L \quad \text{ wobei } M = \max_{t \in [a,b]} |f(\gamma(t))| < \infty$$

KI7 a) Seien γ, δ zwei einfach geschlossene gleich orientierte Kurven und sei U die Menge, die die äussere Kurve umschliesst. Dann

$$f:U\to \mathbb{C}$$
holomorph $\Rightarrow \int_{\gamma}f(z)dz=\int_{\delta}f(z)dz$

KI7 b) Sei $\delta \subseteq U$ eine geschlossene Kurve, die in ihrem Inneren nur Punkte enthält, wo f holomorph ist, dann gilt

$$\int_{\delta} f(z)dz = 0$$

Cauchy Integralformel

Sei $U\subseteq\mathbb{C}$ eine einfach zusammenhängende offene Menge und $z_0\in U$. Sei $\gamma:[0,1]\to U\setminus\{z_0\}$ ein Pfad, der z_0 einmal im positivem Sinne umläuft. Sei $f:U\to\mathbb{C}$ holomorph. Dann gilt:

$$\int_{\gamma} \frac{g(z)}{z - z_0} dz = 2\pi i \cdot g(z_0)$$

Wobei z_0 eine Singularität der Menge U ist und $g(z) = f(z) \cdot z - z_0$.

Allgemeine Cauchy Integralformel

Sei $U \subseteq \mathbb{C}$ eine einfach zusammenhängende offene Menge und $z_0 \in U$. Sei $f: U \to \mathbb{C}$ holomorph und $\gamma: [0,1] \to U \setminus \{z_0\}$ ein Pfad, der $z_0 \in U$ einmal im positivem Sinne umläuft. Dann gilt

$$\int_{\gamma} \frac{g(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} g^{(n)}(z_0)$$

wobei $g^{(n)}$ die n-te Ableitung ist und $g(z) = f(z) \cdot (z - z_0)^{n+1}$

Korollar

Sei f holomorph, dann sind alle Ableitungen $f^{(n)}$ auch holomorph und u := Re(f), v := Im(f) besitzen unendlich viele partielle Ableitungen.

Windungszahl

Die Windungszahl $W(\gamma, z_k)$ einer Kurve γ um einen Punkt z_k sagt aus, wie oft sich γ um z_k im positivem Sinne dreht. Es gilt

$$\int_{\gamma} f(z)dz = \sum_{k}^{n} W(\gamma, z_{k}) \cdot \int_{\gamma_{k}} f(z)dz$$

wobei γ_k ein Pfad ist, der nur die Singularität z_k umkreist.

Der Mittelwertsatz

Sei $U \subset \mathbb{C}$ eine offene Menge und $f: U \to \mathbb{C}$ holomorph (bzw. harmonisch). Seien $z_0 \in U$ und r > 0 s.d. $\overline{B(z_0, r)} \subseteq U$. Dann gilt

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(\underbrace{z_0 + re^{2\pi it}}_{=\partial B(z_0, r)}) dt$$

Jeder Punkt von u(x, y), v(x, y) ist ein Mittelwert von der umgebenden Kreisscheibe $B(z_0, r)$.

Lemma

Sei $f: B(z_0, r) \to \mathbb{C}$ holomorph. Falls für jedes $z \in B(z_0, r)$ gilt

$$|f(z)| \le |\underbrace{f(z_o)}_{\text{Mittelwert}}| \Rightarrow f(z) = const. = f(z_0)$$

In Worten: Falls der Mittelwert der grösste Wert auf der Kreisscheibe ist, dann muss die f(z) konstant sein.

Maximum Modulus Prinzip

Sei Ueine wegzusammenhängende Menge. Sei $f:U\to \mathbb{C}$ holomorph und $nicht\ konstant.$ Dann gilt

$$|f(z)|$$
 besitzt sein Maximum auf ∂U (Rand von U)

Korollar

Sei f eine nicht konstante und stetige Funktion auf einer kompakten Menge K, die holomorph auf dem Inneren von K ist.

$$\Rightarrow \max_{z \in K} |f(z)|$$
 wird auf ∂K erreicht.

Maximum bestimmen auf einer Kreisscheibe

- 1. Bedingungen überprüfen (Holomorph und Wegzusammenhängend)
- 2. Man trifft folgende Vereinfachung (dann nur eine 1D-Optimisierung!):

$$\max_{z \in B(0,R)} |f(z)| \Rightarrow \max_{\varphi \in [0,2\pi)} |f(Re^{i\varphi})|$$

- 3. Bestimmen der Kandidaten für ein Maximum:
 - a) Die Ableitung $\frac{d}{dx}|f(Re^{i\varphi})|$ berechnen.
 - b) Ableitung = 0 setzen: $0 = \frac{d}{dx} |f(Re^{i\varphi})|$
- 4. Die Kandidaten einsetzen in |f(z)| um Maximum (theoretisch auch Minimum) zu bestimmen. Durch Einsetzen in $Re^{i\varphi}$ kann man den Punkt z_0 bestimmen.

Satz von Liouville

Sei $f: \mathbb{C} \to \mathbb{C}$ beschränkt und eine ganze Funktion $\Rightarrow f$ konstant.

Bemerkung: Dieser Satz gilt *nicht* für $f: \mathbb{R}^n \to \mathbb{R}$.

Γipps

Bei nicht geschlossenen Kurvenintegralen von Funktionen mit Singularitäten ist KI4 nützlich in Kombination mit der Cauchy Integralformel.

Reihenentwicklungen

Potenzreihen

Potenzreihen sind Reihen der folgenden Form:

$$c_0 + c_1 z + c_2 z^2 + \dots = \sum_{n=0}^{\infty} c_n z^n$$

Konvergenzradius

Der Konvergenzradius $R \ge 0$ von Potenzreihen ist

$$R := \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|c_n|}} \begin{cases} |z| < R & \text{konvergiert absolut} \\ |z| > R & \text{divergiert} \\ R = \infty & \text{konvergiert} \ \forall z \in \mathbb{C} \end{cases}$$

mit dem Wurzelkriterium und mit dem Quotientenkriterium ist es:

$$R := \frac{1}{\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|} \begin{cases} |z| < R & \text{konvergiert absolut} \\ |z| > R & \text{divergiert} \\ R = \infty & \text{konvergiert} \ \forall z \in \mathbb{C} \end{cases}$$

Das Quotientenkriterium gilt zu vermeiden, wenn der Koeffizient c_n auf zwei oder mehr Arten definiert ist.

Innerhalb vom Konvergenzradius darf man stetige Funktionen austauschen!

Analytische Funktionen

Eine Funktion heisst analytisch (impliziert holomorph), falls sie sich durch eine Potenzreihe darstellen lässt.

Eine Potenzreihe mit Konvergenzradius R>0 definiert eine analytische Funktion auf der offenen Kreisscheibe $\Omega := \{z \in \mathbb{C}; |z| < R\}$:

$$f: \Omega \to \mathbb{C} \qquad f(z) = \sum_{n=0}^{\infty} c_n z^n$$

Wichtige Potenzreihen

Folgende Funktionen besitzen für alle $z \in \mathbb{C}$ konvergente Potenzreihen:

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$\sin(z) := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

$$\cos(z) := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

$$\sinh(z) := \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cosh(z) := \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n)!}$$

Geometrische Reihe

Die Geometrische Reihe ist für |z| < 1 konvergent und es gilt:

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z} \qquad \sum_{k=0}^{n} z^k = \frac{1-z^{n+1}}{1-z}$$

$$\sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z}$$

Taylorreihe

Sei $f: B(z_0, R_0) \to \mathbb{C}$ holomorph und $R_0 > 0$. Dann besitzt f(z) für jedes $z \in B(z_0, R_0)$ eine Taylorreihe:

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n$$

Insbesondere konvergiert die Reihe absolut $\forall z \in B(z_0, R_0)$.

MacLaurin-Reihe

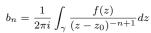
Falls $z_0 = 0$, dann heisst es MacLaurin-Reihe und es gilt

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0)(z)^n$$

Laurent-Reihe

Sei f holomorph auf dem Kreisring $r < |z - z_0| < R$ und γ eine geschlossene Kurve, die im Kreisring enthalten ist und z_0 einmal im positivem Sinn umläuft. Dann besitzt f für jedes z im Kreisring eine Laurent-Reihe:

$$f(z) = \sum_{n=0}^{\infty} a^n (z - z_0)^n + \sum_{n=1}^{\infty} b_n \frac{1}{(z - z_0)^n}$$
$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$



Man kann die Laurent-Reihe auch kompakter schreiben:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n \text{ mit } c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Entwickeln einer Laurent-Reihe

Zuerst die rationale Funktion durch Partialbruchzerlegung zerlegen, dann eine Fallunterscheidung je nach Singularität des Einzelbruchs:

i) Singularität ist ausserhalb vom Kreisring:

Gesuchte Form:
$$\frac{1}{1-\frac{z}{a}} = \sum_{k=0}^{\infty} \frac{z^k}{a^k}$$
, konvergent für $|z| < a$

ii) Singularität ist **umschlossen** vom Kreisring:

Gesuchte Form:
$$\frac{1}{1-\frac{b}{z}} = \sum_{n=0}^{\infty} \frac{b^n}{z^n}$$
, konvergent für $\left|\frac{b}{z}\right| < 1 \Leftrightarrow |z| > |b|$

Kreisring mit verschobenem Zentrum w_0

Ist das Gebiet $r < |z - w_0| < R$, dann Substitution $u = z - w_0$ benutzen!

Singularität

Sei f nicht holomorph in z_0 . Falls f holomorph in mindestens einem Punkt in irgendeiner möglichen Kreisscheibe $B(z_0,\epsilon)$ ist, heisst z_0 eine Singularität.

Isolierte Singularität

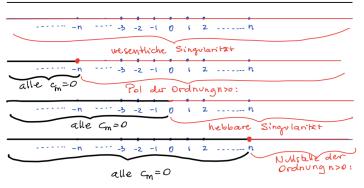
Eine Singularität heisst isoliert, falls es ein $\epsilon > 0$ gibt, so dass f(z) auf $B(z_0,\epsilon)\setminus\{z_0\}$ holomorph ist.

Klassifizierungen

Sei $U \subseteq \mathbb{C}$ offen und $z_0 \in U$, und sei f holomorph auf $U \setminus \{z_0\}$. So besitzt f eine Laurententwicklung auf $U \setminus \{z_0\}$.

Sei $c_k = 0$ für alle k < n und $c_n \neq 0$. Dann gilt:

- i) $0 < n \Rightarrow z_0$ ist eine Nullstelle n-ter Ordnung.
- ii) $n = 0 \Rightarrow z_0$ ist eine hebbare Singularität.
- iii) $n < 0 \Rightarrow z_0$ ist ein Pol n-ter Ordnung.
- iv) Falls für alle $c_k = 0$ ein $c_m \neq 0$ mit m < k existiert, dann ist z_0 eine wesentliche Singularität.



Hebbarkeitsatz von Riemann

Sei z_0 eine isolierte Singularität von $f: U \setminus \{z_0\} \to \mathbb{C}$. Es ist äquivalent:

 z_0 ist eine hebbare Singularität von f.

- $\Leftrightarrow \lim_{z \to z_0} f(z)$ existient in \mathbb{C} (holomorph fortsetzbar in z_0)
- \Leftrightarrow f ist auf einer punktierten Scheibe $B(z_0, \epsilon) \setminus \{z_0\}$ beschränkt.

c r

Eine holomorphe Funktion auf $U \setminus \{z_0, \ldots, z_N\}$ heisst meromorph auf U, falls z_0, \ldots, z_N Pole oder hebbare Singularitäten sind.

Satz von Picard

Sei z_0 eine wesentliche Singularität von f(z). In jeder noch so kleinen punktierten Scheibe $B(z_0,\epsilon)\setminus\{z_0\}$ nimmt f(z) jeden Wert in \mathbb{C} , bis auf höchstens eine Ausnahme, unendlich oft an.

Der Residuensatz

Das Residuum

Sei z_0 eine isolierte Singularität von f. Man nennt den Koeffizient c_{-1} der Laurent-Reihe, das Residuum von f an der Stelle z_0 .

$$\operatorname{Res}(f, z_0) := c_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(\xi) d\xi$$

Der Residuensatz

Sei $U \subset \mathbb{C}$ eine offene wegzusammenhängende Menge, $\gamma \subset U$ eine positiv orientierte geschlossene Kurve die $z_1, \ldots, z_n \in U$ mit der jeweiligen Windungszahl $W(\gamma, z_k)$ umschliesst. Sei $f: U \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$ holomorph. Dann gilt:

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} W(\gamma, z_k) \cdot \text{Res}(f, z_k)$$

Polstellen

Sei z_0 eine isolierte Singularität von f(z). Die Stelle z_0 ist ein Pol der Ordnung $m \geq 1$ genau dann, wenn es eine in der Umgebung von z_0 holomorphe Funktion ϕ gibt, mit

$$f(z) = \frac{\phi(z)}{(z-z_0)^m}$$
 wobei $\phi(z_0) \neq 0$

Bzw:
$$\phi(z_0) = \lim_{z \to z_0} (z - z_0)^m f(z) \neq 0$$

Ist $\phi(z_0) = 0$, dann muss man über die Laurententwicklung gehen.

Korollar

Falls z_0 ein Pol der Ordnung m der Funktion f ist, gilt

Res
$$(f, z_0) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$$

Bzw:
$$\operatorname{Res}(f, z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{(m-1)}}{dz^{m-1}} [(z-z_0)^m f(z)]$$

Nullstellen

Sei $f:U\to\mathbb{C}$ holomorph an der Stelle $z_0\in U.$ f hat in z_0 eine Nullstelle der Ordnung m genau dann, wenn es ein $g:U\to\mathbb{C}$ holomorph gibt, mit

$$f(z) = (z - z_0)^m g(z)$$
 wobei $g(z_0) \neq 0$

Korollar

Seien p(z), q(z) holomorph an der Stelle z_0 mit $p(z_0) \neq 0$ und sei z_0 eine Nullstelle der Ordnung m für q(z).

$$\Rightarrow z_0$$
 ein Pol der Ordnung m für $\frac{p(z)}{q(z)}$

Bem: Nützlicher Alternativer Weg zur Ermittlung der Ordnung vom Pol in $z_0=0$ von Termen mit bekannten Potenzreihen (exp, sin, cos).

Anwendung: Bedingungen unter denen $f(z) \equiv 0$

Lemma

Sei $f: B(z_0, \epsilon) \to \mathbb{C}$ holomorph und $f(z_0) = 0$. Dann ist entweder $f(z) \equiv 0 \ \forall z \in B(z_0, \epsilon)$ oder z_0 ist eine isolierte Nullstelle von f.

Satz

Sei U wegzusammenhängend und $f:U\to\mathbb{C}$ holomorph. Falls $f(z)\equiv 0$ auf einer offenen Menge oder Geradenstrecke ist, dann ist $f\equiv 0$ auf U.

Identitätsprinzip für holomorphe Funktionen

Sei $U \subseteq \mathbb{C}$ offen und seien $f, g: U \to \mathbb{C}$ holomorph. Falls f(z) = g(z) auf einer offenen Menge oder Geradenstrecke in U, dann gilt $f(z) \equiv g(z)$.

Eigentliche Integrale mit Sinus und Cosinus

Die Strategie ist es das reelle Integral in ein Kurvenintegral zu wandeln und dieses mit dem Residuensatz zu lösen.

Sei ein Pfad $\gamma(t)=e^{it}$ mit $t\in[0,2\pi]$, so dass $\dot{\gamma}(t)=ie^{it}dt$ ist, dann erhaltet man mit der Substitution $z=e^{it}$:

$$\int_{0}^{2\pi} F(\cos(t), \sin(t)) dt = \int_{\gamma} F(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}) \frac{dz}{iz}$$

Anwendung: Uneigentliche Integrale

Das Uneigentliche Integral ist, wie folgt definiert:

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{0} f(x)dx + \lim_{R \to \infty} \int_{0}^{R} f(x)dx$$

Sei $\gamma_R=Re^{i\pi t}$ und $\gamma_{[-R,R]}=2Rt-R$ mit $t\in[0,1]$. Die Idee ist es alle Pole in der oberen Halbebene über die geschlossene Kurve $\gamma_R*\gamma_{[-R,R]}$ zu integrieren und den Residuensatz zu verwenden:

$$\lim_{R \to \infty} \int_{\gamma_R} f(x) dx + \int_{-R}^{R} f(x) dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_k)$$

Ist $\lim_{R\to\infty}\int_{\gamma_R}f(x)dx=0$ so vereinfacht sich das Kurvenintegral zu:

$$\lim_{R \to \infty} \int\limits_{-R}^{R} f(z)dz = P.V. \int\limits_{-\infty}^{\infty} f(z)dz = 2\pi i \sum_{\mathrm{Im}(z_k) > 0} \mathrm{Res}(f, z_k)$$

wobei z_k alle Polstellen in der oberen Halbebene sind $(\text{Im}(z_k) > 0)$.

Bemerkung: Gerade Funktionen

Für gerade Funktionen (f(x) = f(-x)) gilt ausserdem immer:

$$P.V. \int_{-\infty}^{\infty} f(z)dz = 2 \cdot \int_{0}^{\infty} f(x)dx$$

Lemma

Sei $f(z) := \frac{p(z)}{q(z)} h(z)$ mit den Polynomen p(z), q(z). Wenn folgendes gilt:

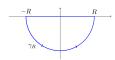
- 1. $\deg(p) + 2 \le \deg(q)$
- 2. q(z) hat keine Nullstellen auf der Reellen Achse.
- 3. |h(z)| ist auf $\{z \in \mathbb{C}; \text{Im}(z) \ge 0\}$ beschränkt.

Dann ist die Vorraussetzung $\lim_{R\to\infty}\int_{\gamma_R}f(z)dz=0$ erfüllt.

Wenn |h(z)| auf $\{z \in \mathbb{C} : \text{Im}(z) \leq 0\}$ beschränkt ist, dann gilt:

$$P.V.$$

$$\int_{-\infty}^{\infty} f(x)dx = -2\pi i \sum_{\text{Im}(z_j) < 0} \text{Res}(f, z_j)$$



Bem: Falls q(z) eine Nullstelle auf der Reellen Achse besitzt, muss man ein Kurvenintegral anschauen, welches nur einen einzigen Pol umschliesst (Kurve der Form eines Kreiskegel zum Beispiel).

Uneigentliche Integrale mit Sinus und Cosinus

Die Idee ist folgende Gleichung mit dem oberen Lemma anzuwenden:

$$\int_{-\infty}^{\infty} g(x)\cos(\alpha x)dx + i\int_{-\infty}^{\infty} g(x)\sin(\alpha x)dx = \int_{-\infty}^{\infty} g(x)e^{i\alpha x}dx$$

Dabei ist
$$f(z) := \frac{p(z)}{q(z)}h(z)$$
 mit: $h(z) = e^{i\alpha x}$ und $g(x) = \frac{p(z)}{q(z)}$.

Mit der Fallunterscheidung für |h(z)| kommt man dann auf folgendes:

$$\int_{-\infty}^{\infty} g(x) \cos(\alpha x) dx = \begin{cases} \operatorname{Re} \left(2\pi i \sum_{\operatorname{Im}(z_j) > 0} \operatorname{Res}(f(z), z_j) \right) &, \alpha > 0 \\ \operatorname{Re} \left(-2\pi i \sum_{\operatorname{Im}(z_j) < 0} \operatorname{Res}(f(z), z_j) \right) &, \alpha < 0 \end{cases}$$

$$\int_{-\infty}^{\infty} g(x)\sin(\alpha x)dx = \begin{cases} \operatorname{Im}\left(2\pi i \sum_{\operatorname{Im}(z_j)>0} \operatorname{Res}(f(z), z_j)\right) &, \alpha > 0\\ \operatorname{Im}\left(-2\pi i \sum_{\operatorname{Im}(z_j)<0} \operatorname{Res}(f(z), z_j)\right) &, \alpha < 0 \end{cases}$$

Ergänzung zum Verfahren

Vorgehen um zu zeigen, dass $\lim_{R\to\infty}\int_{\gamma_{[-R,R]}}f(z)dz=\lim_{R\to\infty}\int\limits_{-R}^{R}f(x)dx$:

- 1. Kurvenintegral aufstellen für $\gamma_{[-R,R]} = 2Rt R$ mit $t \in [0,1]$.
- 2. Substitutionregel anwenden mit x = 2Rt R.

Fourier Analysis

Periodische Funktionen

Sei $h: \mathbb{R} \to \mathbb{C}$. h ist periodisch, falls es ein $T \in \mathbb{R}$ gibt, sodass

$$h(t+T) = h(t) \quad \forall t \in \mathbb{R}$$

T heisst die Periode von h. Die kleinste Periode heisst Fundamentalperiode. Die Frequenz von h ist $f = \frac{1}{T}$.

Bemerkung

Die Summe und das Produkt periodischer Funktionen ist genau dann periodisch, wenn alle Perioden ein gemeinsames Vielfaches haben.

Fourierreihe

Die Fourierreihe (bzw. trigonometrische Reihe) ist eine Reihe der Form

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi}{T}nt\right) + b_n \sin\left(\frac{2\pi}{T}nt\right) \right) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{2\pi}{T}nt}$$

mit $a_b, b_n \in \mathbb{R}$ und $c_n \in \mathbb{C}$.

Koeffizienten der Fourierreihe

Sei t_0 der Startzeitpunkt der Periode T und $n \in \mathbb{N}$. Dann gilt

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos(\frac{2\pi}{T}nt) dt \qquad b_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \sin(\frac{2\pi}{T}nt) dt$$

$$a_0 = \frac{1}{T} \int_{t_0}^{t_0 + T} f(t) dt$$

$$a_0 = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) dt$$

$$c_n = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) \exp(-i\frac{2\pi}{T}nt) dt$$

Symmetrieeigenschaften

Falls f(t) **gerade** ist, dann gilt:

$$a_n = \frac{4}{T} \int_{t_0}^{t_0+T/2} f(t) \cos(\frac{2\pi}{T}nt) dt$$
 $b_n = 0$

Falls f(t) ungerade ist, dann gilt:

$$a_n = 0$$
 $b_n = \frac{4}{T} \int_{t_0}^{t_0 + T/2} f(t) \sin(\frac{2\pi}{T}nt) dt$

Koeffizientenumrechnung

$$c_{-n} = \frac{1}{2}(a_n + ib_n)$$

$$c_0 = a_0$$

$$c_n = \frac{1}{2}(a_n - ib_n)$$

$$a_0 = c_0$$

$$a_n = c_n + c_{-n}$$

$$b_n = i(c_n - c_{-n})$$

Begriffe

Mittelwert von f auf einer Periode:

1. Harmonische oder 1. Grundschwingung: $a_1\cos(\frac{2\pi}{T}t) + b_1\sin(\frac{2\pi}{T}t)$

n-te Harmonische oder n-1-te Oberschwingung: $a_n \cos(\frac{2\pi}{T}nt) + b_n \sin(\frac{2\pi}{T}nt)$

Satz von Dirichlet

Sei f eine 2L-periodische Funktion auf [-L, L]. Sei f stückweise stetig und es existiert eine linke und rechte Ableitung an jedem Punkt in [-L, L]. Dann ist die Fourierreihe von f auf [-L, L] konvergent und

$$\sum_{n=-\infty}^{\infty} c_n e^{i\frac{n\pi}{L}t} = \begin{cases} f(t) & f \text{ ist stetig} \\ \frac{1}{2} \left(f(t^-) + f(t^+) \right) & f \text{ ist nicht stetig} \end{cases}$$

wobei
$$f(t^-) := \lim_{t \to t_0^-} f(t)$$
 und $f(t^+) := \lim_{t \to t_0^+} f(t)$.

Trigonometrisches Polynom

Ein trigonometrisches Polynom N-ten Grades ist

$$f(t) \approx a_0 + \sum_{n=1}^{N} \left(a_n \cos(\frac{2\pi}{T}nt) + b_n \sin(\frac{2\pi}{T}nt) \right) = \sum_{n=-N}^{N} c_n e^{i\frac{2\pi}{T}nt}$$

Gibbsches Phänomen

In der Nähe einer Sprungstelle treten immer Überschwingungen ('Gibbs tower') auf. Die Höhe der Überschwingungen wird immer etwa 18% der Sprunghälfte betragen:

$$\sup_{t \in [-L,L]} |f(t) - s_N(t)| \approx 0.18 \cdot \frac{1}{2} \left(f(t^-) + f(t^+) \right)$$

Gibbs tower verschwinden erst bei unendlich vielen Termen (Punktweise Konvergenz), sie nähern sich mit mehr Termen nur der Sprungstelle an.

Beste Approximation

Das trigonometrische Polynom vom Grad N, welches am besten eine 2π -periodische Funktion f auf dem Intervall $[-\pi,\pi]$ approximiert, ist die partielle Summe s_N der Fourierreihe von f. Der kleinste quadratischen Fehler $E_{N}^{*}(f)$ ist

$$E_N^*(f) := \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} |f(t)|^2 dt - \frac{1}{2} \left(a_0^2 + \sum_{n=1}^{N} (a_n^2 + b_n^2) \right)$$

wobei $E_N^*(f)$ monoton abnimmt mit zunehmendem N.

Satz von Parseval

Die "Energie" vom Signal ist in Zeit- und Frequenzbereich gleich:

$$|f(t)|^2 = \frac{1}{T} \int_{t_0}^{t_0+T} |f(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2 = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2)$$

Sonstiges

Gerade und ungerade Funktionen

Eine Funktion f(t) heisst:

- i) gerade falls f(t) = f(-t) (Symmetrisch zur y-Achse).
- ii) unqerade falls f(t) = -f(-t) (Punktsymm. zum Ursprung).

Es gelten die folgenden Eigenschaften:

- Das Produkt zweier geraden oder ungeraden Funktionen ist gerade.
- Das Produkt einer geraden und ungeraden Funktion ist ungerade.
- Falls g(t) gerade ist, gilt $\int_{t_0}^{t_0+T} g(t)dt = 2\int_{t_0}^{t_0+T/2} g(t)dt$.
- Falls g(t) ungerade ist, gilt $\int_{t_0}^{t_0+T} g(t)dt = 0$.

Orthonormalitätsrelationen

Seien $n, m \in \mathbb{Z}$. Dann gilt

i)
$$\frac{1}{2T} \int_{-T}^{T} e^{i\frac{n\pi}{T}t} e^{-i\frac{m\pi}{T}t} dt = \begin{cases} 1 & n=m \\ 0 & n \neq m \end{cases}$$

Seien $n, m \in \mathbb{N}_0$. Dann gilt

$$i) \quad \int\limits_{-T}^{T} \cos(\frac{n\pi}{T}t)\cos(\frac{m\pi}{T}t)dt = \begin{cases} 0 & n \neq m \\ T & n = m \neq 0 \\ 2T & n = m = 0 \end{cases}$$

$$ii) \quad \int\limits_{-T}^{T} \sin(\frac{n\pi}{T}t)\sin(\frac{m\pi}{T}t)dt = \begin{cases} 0 & n \neq m \\ T & n = m \neq 0 \end{cases}$$

$$iii) \quad \int\limits_{-T}^{T} \cos(\frac{n\pi}{T}t)\sin(\frac{m\pi}{T}t)dt = 0, \, \forall n, m$$

Tipps/Ergänzungen aus Serien

Die Fourierreihe eines Terms der Form $\sin(t)^a\cos(t)^b$ berechnet man am schnellsten, indem man $\sin(t) = \frac{e^{it} - e^{-it}}{2i}$ und $\cos(t) = \frac{e^{it} + e^{-it}}{2}$ be-

Sei $f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$ eine Fourierreihe mit $c_k = c_{-k}$ und $c_k = \overline{c_k}$. Dann liegt eine Kosinus-Reihe mit reellen Koeffizienten vor.

Sei $f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$ eine Fourierreihe mit $-c_k = c_{-k}$ und $ic_k \in \mathbb{R}$. Dann liegt eine Sinus-Reihe mit reellen Koeffizienten vor.

Fourier-Transformation

Integraltransformation

Eine Integraltransformation ist eine Transformation der Art

$$Tf(y) := \int_X K(x, y) f(x) dx$$

wobei f eine Funktion auf der Menge X ist und K auf $X \times Y$. Die Funktion K(x, y) heisst der Kern der Integraltransformation.

Bei der Fourier-Transformation ist $X = \mathbb{R} = Y$ und $K(x, y) = e^{-ixy}$.

Absolut integrierbar

Die Funktion $f: \mathbb{R} \to \mathbb{C}$ heisst absolut integrierbar, falls

$$\int_{-\infty}^{\infty} |f(t)|dt < \infty \qquad \left(\Rightarrow \lim_{t \to \pm \infty} f(t) = 0 \right)$$

Fourier-Transformation

Sei $f: \mathbb{R} \to \mathbb{C}$ absolut integrierbar. Die Fourier Transformation \hat{f} ist

$$\hat{f}(\omega) = \mathcal{F}\{f(t)\}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

Inverse Fourier-Transformation

Sei \hat{f} auch absolut integrierbar. Die inverse Fourier Transformation ist

$$f(t) = \mathcal{F}^{-1}\{\hat{f}(\omega)\}(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} d\omega$$

Bemerkung: Der Faktor $\frac{1}{\sqrt{2\pi}}$ kann man bei $\mathcal{F}\{f(t)\}$ weglassen und anstelle diesem bei $\mathcal{F}^{-1}\{\hat{f}(\omega)\}$ den Faktor $\frac{1}{2\pi}$ nehmen (vice-versa auch).

Satz von Dirichlet für die Fourier Transformation

Sei $f:\mathbb{R}\to\mathbb{C}$ eine *stückweise* stetige absolut integrierbare Funktion, die eine linke und rechte Ableitung an *jedem Punkt* hat. Dann gilt abhängig von der Stetigkeit vom Punkt $t_0\in\mathbb{R}$:

$$f(t) = \begin{cases} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\nu) e^{-i\omega\nu} d\nu \right) e^{-i\omega t} dt & f(t_0) \text{ stetig} \\ \frac{1}{2} \left(\lim_{t \to t_0^-} f(t) + \lim_{t \to t_0^+} f(t) \right) & f(t_0) \text{ nicht stetig} \end{cases}$$

Satz von Plancherel

Sei $f: \mathbb{R} \to \mathbb{C}$ eine absolut integrierbare Funktion deren Fourier-Transformation auch absolut integrierbar ist. Dann gilt

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |\mathcal{F}\{f\}(\omega)|^2 d\omega$$

Die Physikalische Interpretation ist, dass die Fouriertransformation die Gesamtenergie eines Zeitsignals erhält.

Eigenschaften der Fourier Transformation

Seien $f, g : \mathbb{R} \to \mathbb{C}$ (und $\hat{f}, f^{(n)}$) absolut integrierbar. Dann gilt

FT1 (Linearität): Für jedes $\alpha, \beta \in \mathbb{C}$ gilt

$$\mathcal{F}\{\alpha f + \beta g\}(\omega) = \alpha \mathcal{F}\{f\}(\omega) + \beta \mathcal{F}\{g\}(\omega)$$

FT2 (Verschiebung in der t-Variable): Sei $\alpha \in \mathbb{R}$. Dann gilt

$$\mathcal{F}{f(t-a)}(\omega) = e^{-i\omega a} \cdot \mathcal{F}{f(t)}(\omega)$$

FT3 (Verschiebung in der ω -Variabel): Sei $a \in \mathbb{R}$. Dann gilt

$$\mathcal{F}\lbrace e^{iat}f(t)\rbrace(\omega) = \mathcal{F}\lbrace f(t)\rbrace(\omega-a)$$

FT4 (Streckung) Sei $a \in \mathbb{R}$. Dann gilt

$$\mathcal{F}{f(at)}(\omega) = \frac{1}{|a|} \cdot \mathcal{F}{f(t)}(\frac{\omega}{a})$$

FT5 (Fouriertransformierte einer Fouriertransform) Es gilt:

$$\mathcal{F}\{\mathcal{F}\{f(t)\}\} = f(-t)$$

FT6 (Fourier-Transformation der Ableitung $f^{(n)}$) Für $n \in N$ gilt

$$\mathcal{F}\{f^{(n)}(t)\}(\omega) = (i\omega)^n \cdot \mathcal{F}\{f(t)\}(\omega)$$

FT7 (Ableitung der Fourier-Transformation) Für $n \in N$ gilt

$$\mathcal{F}\{t^n f(t)\}(\omega) = i^n \frac{d^n}{d\omega^n} \mathcal{F}\{f(t)\}(\omega)$$

Faltung

Seien $f,g:\mathbb{R}\to\mathbb{C}$ zwei absolut integrierbare Funktionen. Das Faltungsprodukt f*gvon fund gist

$$(f * g)(x) := \int_{-\infty}^{\infty} f(x - t)g(t)dt = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

Die Faltung ist ein gewichteter Mittelwert von f mit Gewicht gegeben durch q.

Bemerkungen

i) Falls für jedes t < 0 f(t) = 0 und g(t) = 0 gilt, dann folgt

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt = \int_{0}^{\infty} f(x - t)g(t)dt = \int_{0}^{x} f(x - t)g(t)dt$$

wobei die Beschränkungen vom Integral durch die Bedingungen oben gegeben sind. Der erste Schritt folgt durch g(t)=0 und der zweite aus $f(x-t)=0 \Rightarrow x-t<0 \Rightarrow x< t$.

ii) f*g ist mindestens so glatt, wie die glatteste der beiden Funktionen. Je öfters eine Funktion differenzierbar ist, desto glätter ist sie.

Eigenschaften der Faltung

Seien $f,g:\mathbb{R}\to\mathbb{C}$ absolut integrierbare Funktionen und $\alpha,\beta\in\mathbb{C}$. Dann F1 (Kommutativität) Es gilt

$$f * g = g * f$$

F2 (Assoziativität) Es gilt

$$(f * g) * h = f * (g * h)$$

F3 (Distributivität) Es gilt

$$(\alpha f + \beta g) * h = \alpha f * h + \beta g * h$$

F4 Falls $(T_a f)(x) := f(x - a)$, dann gilt

$$(T_a f) * g = T_a (f * g)$$

F5 (Faltungssatz) Die Fouriertransformation der Faltung ist:

$$\mathcal{F}{f * g} = \sqrt{2\pi}\mathcal{F}{f}\mathcal{F}{g}$$

$$\mathcal{F}^{-1}{f * g} = \frac{1}{\sqrt{2\pi}}\mathcal{F}^{-1}{f}\mathcal{F}^{-1}{g}$$

F6 Seien $\mathcal{F}\{f\}$, $\mathcal{F}\{g\}$ und $f \cdot g$ auch absolut integrierbar, dann gilt

$$\mathcal{F}\{f \cdot g\} = \sqrt{2\pi} \cdot \mathcal{F}\{f\} * \mathcal{F}\{g\}$$

$$\mathcal{F}^{-1}\{f \cdot g\} = \frac{1}{\sqrt{2\pi}} \cdot \mathcal{F}^{-1}\{f\} * \mathcal{F}^{-1}\{g\}$$

Laplace-Transformation

Der Unterschied zwischen der Laplace-Transformation und der Fourier-Transformation ist, dass man für die Laplace-Transformation auch wachsende Funktionen betrachten kann.

Sei $s\in\mathbb{C}.$ Die Laplace-Transformation der Funktion $f:\mathbb{R}\to\mathbb{C}$ ist

$$\mathcal{L}\{f(t)\}(s) := \int_{0}^{\infty} e^{-st} f(t) dt$$

Sei \mathcal{E} der Raum der Funktionen $f: \mathbb{R} \to \mathbb{C}$ mit folgenden Eigenschaften:

- 1) f(t) = 0 für jedes t < 0
- 2) Es gibt ein $\sigma \in \mathbb{R}$ und ein M > 0 für alle t > 0 mit

$$|f(t)| < Me^{\sigma t}$$

3) f ist stückweise stetig und die Grenzwerte

$$\lim_{t \to t_0^-} f(t) \text{ und } \lim_{t \to t_0^+} f(t)$$

existieren an jeder Sprungstelle $t_0 \in \mathbb{R}_{>0}$, auch bei $t_0 = 0$.

Dann ist die Laplace-Transformation für jedes $f\in\mathcal{E}$ auf der Halbebene $\{s\in\mathbb{C}:\mathrm{Re}(s)>\sigma\}$ wohldefiniert und eine komplexe Analytische Funktion der Variable s. Ausserdem gilt

$$\lim_{\mathrm{Re}(s)\to\infty} \mathcal{L}\{f(t)\}(s) = 0$$

Grundbegriffe

Man nennt \mathcal{E} Originalraum und eine Funktion $f \in \mathcal{E}$ Originalfunktion und der Definitionsbereich von f heisst Zeitbereich. Die Laplace-Transformation $\mathcal{L}\{f\}$ ist eine Bildfunktion und der Definitionsbereich von $\mathcal{L}\{f\}$ heisst Bildbereich.

Wachstumskoeffizient

Das kleinste σ_f , so dass $|f(t)| < Ce^{\sigma t}$ für jedes $\sigma_f < \sigma$ heisst Wachstumskoeffizient.

Heaviside Funktion

Falls $f\not\equiv 0$ für t<0, kann man immer die Funktion zwingen die Bedingung zu erfüllen indem man die Funktion f mit der Heaviside Funktion H(t) multipliziert.

$$H(t) := \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$$

Eigenschaften der Laplace-Transformation

Seien $f, g \in \mathcal{E}, \alpha, \beta \in \mathbb{C}$. Dann gilt

LT1 (Linearität):

$$\mathcal{L}\{\alpha f(t) + \beta g(t)\}(s) = \alpha \mathcal{L}\{f(t)\}(s) + \beta \mathcal{L}\{g(t)\}(s)$$

LT2 (Verschiebung in der t-Variable): Sei $a \in \mathbb{R}$. Dann gilt

$$\mathcal{L}\{f(t-a)\}(s) = e^{-as}\mathcal{L}\{f(t)\}(s)$$

Bem: Bei der Rücktransformation mit H(t-a) multiplizieren! LT3 (Verschiebung in der s-Variabel):

$$\mathcal{L}\lbrace e^{\alpha t} f(t)\rbrace(s) = \mathcal{L}\lbrace f(t)\rbrace(s-\alpha)$$

LT4 (Ähnlichkeit) Sei $a \in \mathbb{R}^+$. Dann gilt

$$\mathcal{L}\{f(at)\}(s) = \frac{1}{a}\mathcal{L}\{f(t)\}\left(\frac{s}{a}\right)$$

LT5 (Laplace-Transformation der Ableitung) Sei $f' \in \mathcal{E}$ und f(t) stetig für t>0. Dann gilt

$$\mathcal{L}\lbrace f'(t)\rbrace(s) = s\mathcal{L}\lbrace f(t)\rbrace(s) - \lim_{t\to 0^+} f(t)$$

Falls $f'', \ldots, f^{(n)} \in \mathcal{E}$ und $f, \ldots, f^{(n-1)}$ stetig für t > 0 sind, dann gilt

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n \mathcal{L}\{f(t)\}(s) - \sum_{k=1}^n s^{n-k} \lim_{t \to 0^+} f^{(k-1)}(t)$$

LT6 (Ableitung der Laplace-Transformation) Für $n \in N$ gilt

$$\frac{d^n}{ds^n}\mathcal{L}\{f(t)\}(s) = (-1)^n\mathcal{L}\{t^nf(t)\}(s)$$

LT7 (Laplace-Transformation eines Integrals)

$$\mathcal{L}\left\{\int_{0}^{t} f(\tau)d\tau\right\}(s) = \frac{1}{s}\mathcal{L}\{f(t)\}(s)$$

LT8 Sei σ_f der Wachstumskoeffizient von f. Für $x>\sigma_f~(x\in\mathbb{R})$ gilt

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(x+iy) = \int_{x+iy}^{\infty+iy} \mathcal{L}\{f(t)\}(\tau)d\tau$$

LT9 Sei f eine T-periodische Funktion (f(t+T)=T) für jedes $t\geq 0$. Dann gilt für jedes $s\in\mathbb{C}$ mit $\mathrm{Re}(s)>0$.

$$\mathcal{L}{f(t)}(s) = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t)dt$$

LT10 (Faltungssatz)

$$\mathcal{L}\lbrace f*g\rbrace(s) = \mathcal{L}\lbrace \int_0^t f(\tau)g(t-\tau)d\tau\rbrace(s) = \mathcal{L}\lbrace f(t)\rbrace(s) \cdot \mathcal{L}\lbrace g(t)\rbrace(s)$$

LT11 (Dirac-Delta Funktion) Sei $a \in \mathbb{R}$. Dann gilt

$$\mathcal{L}\{\delta(t-a)\}(s) = e^{-as}$$

Satz von Lerch (Eindeutigkeit der Laplace-Transformation)

Seien $f_1, f_2 \in \mathcal{E}$ mit Wachstumskoeffizienten σ_1, σ_2 . Gilt

$$\mathcal{L}{f_1(t)}(s) = \mathcal{L}{f_2(t)}(s)$$

für jedes s mit $Re(s) > max\{\sigma_1, \sigma_2\}$. Dann ist

$$f_1(t) = f_2(t)$$

an allen Stellen t an denen f_1 und f_2 stetig sind.

Inverse Laplace-Transformation

Sei $f \in \mathcal{E}$ mit Wachstumskoeffizient σ_f . Sei $\beta_c(y) := c + iy$ für $y \in (-\infty, \infty)$ ein Pfad, wobei $c > \sigma_f$ beliebig ist. Dann gilt an allen Stetigstellen $t \in (0, \infty)$ von f

$$f(t) = \frac{1}{2\pi i} \int_{\beta_c} e^{st} \mathcal{L}\{f(t)\}(s) ds$$

An den Unstetigstellen $t_0 \in (0, \infty)$ gilt

$$\frac{1}{2} \left(\lim_{t \to t_0^-} \mathcal{L}\{f(t)\}(s) + \lim_{t \to t_0^+} \mathcal{L}\{f(t)\}(s) \right) = \frac{1}{2\pi i} \int_{\beta_c} e^{st} \mathcal{L}\{f(t)\}(s) \, ds$$

Die Inverse Laplace-Transformation kann entweder durch dieses Kurvenintegral berechnet werden oder über die Eigenschaften der Laplace-Transformation bzw. die Transformationstabelle.

Laplace-Transformationstabelle

Bei der Rücktransformation immer mit H(t) multiplizieren!!!

Originalraum $f(t)$	Bildbereich $\mathcal{L}\{f(t)\}(s)$
1	$\frac{1}{s}, s > 0$
t^n	$\frac{n!}{s^{n+1}}, s > 0$
$\sin(at)$	$\frac{a}{s^2 + a^2}, s > 0$
$\cos(at)$	$\frac{s}{s^2 + a^2}, s > 0$
e^{at}	$\frac{1}{s-a}, s > a$
$e^{at} \cdot \sin(bt)$	$\frac{b}{(s-a)^2 + b^2}, s > a$
$e^{at} \cdot \cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}, s>a$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}, s > a$
f'(t)	$s\mathcal{L}\{f(t)\}(s) - f(0)$
f''(t)	$s^2 \mathcal{L}\{f(t)\}(s) - sf(0) - f'(0)$

Differentialgleichungen (DGL) lösen mit Laplace

- 1. Die DGL in den Bildbereich transformieren (LT5).
- 2. Anfangswerte in transformierte DGL einsetzen.
- 3. DGL nach $\mathcal{L}\{y(t)\}(s) = Y(s)$ auflösen.
- 4. Partialbruchzerlegung
- 4.5 Je nachdem wie die Transfomierte aussieht nach der Partialbruchzerlegung, muss man die Zerlegung zurücktransformieren, damit man Eigenschaften anwenden kann, um zur Lösung zu kommen. (z.B. LT2)
- 5. Rücktransformation mit Tabellen und mit H(t) multiplizieren.

Dirac-Delta Funktion (Dirac-Impuls)

Die Dirac-Delta Funktion $(\delta(t))$ ist, wie folgt definiert:

$$\delta_{\epsilon}(t) := \frac{1}{2\epsilon} \chi_{(-\epsilon,\epsilon)}(t)$$

$$\delta(t) := \lim_{\epsilon \to 0} \delta_{\epsilon}(t)$$

$$\delta(t) := \lim_{\epsilon \to 0} \delta_{\epsilon}(t)$$

Eigenschaften

Die Eigenschaften D1 und D2 charakterisieren die Delta Dirac eindeutig!

D1 Obwohl $\delta(t)$ im Ursprung "unendlich" ist, gilt trotzdem

$$\int_{-\infty}^{\infty} \delta(t) = 1$$

D2 Für jede stetige Funktion f gilt

$$\int_{-\infty}^{\infty} \delta(t - t_0) f(t) dt = f(t_0)$$

D3 Sei H(t) die Heaviside Funktion, dann gilt

$$H(t) = \int_{-\infty}^{t} \delta(s)ds$$

Sonstiges

Ergänzung: Periodizität der Tangens-Funktion

Für die komplexe Zahl Z in der komplexen Ebene in Abbildung 4.9 gilt

$$X = Z\cos\varphi \tag{4.33}$$

$$Y = Z\sin\varphi \tag{4.34}$$

mit $Z = \sqrt{X^2 + Y^2} \le 0$ und $0 \le \varphi \le 2\pi$.

Bei der Berechnung des Winkels

$$\varphi = \arctan \frac{Y}{Y} \tag{4.35}$$

muss die Periodizität der Tangens-Funktion mit π beachtet werden. Für einen Winkel, der zwischen 0und 2π liegt, treten folgende Fallunterscheidungen auf

$$X < 0 \rightarrow \varphi = \pi + \arctan \frac{Y}{X}$$
 (4.36)

$$X = 0 \rightarrow \varphi = \begin{cases} \frac{\pi}{2} \\ \frac{3\pi}{2} \end{cases}$$
 für $\begin{cases} Y > 0 \\ Y < 0 \end{cases}$ (4.37)

$$X > 0 \rightarrow \varphi = \begin{cases} \arctan \frac{Y}{X} & \text{für } Y > 0 \\ 2\pi + \arctan \frac{Y}{X} & \text{für } Y < 0 \end{cases}$$
 (4.38)

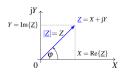


Figure 4.9: Darstellung der komplexen Zahl Z in der komplexen Ebene.