diff --git a/zusammenfassung/analysis/AnalysisZF.aux b/zusammenfassung/analysis/AnalysisZF.aux new file mode 100644 index 0000000..8c90ba8 --- /dev/null +++ b/zusammenfassung/analysis/AnalysisZF.aux @@ -0,0 +1,637 @@ +\relax +\providecommand*\new@tpo@label[2]{} +\providecommand\babel@aux[2]{} +\@nameuse{bbl@beforestart} +\catcode `"\active +\providecommand\hyper@newdestlabel[2]{} +\providecommand\HyField@AuxAddToFields[1]{} +\providecommand\HyField@AuxAddToCoFields[2]{} +\providecommand\BKM@entry[2]{} +\BKM@entry{id=1,dest={73656374696F6E2A2E32},srcline={114}}{5C3337365C3337375C303030475C303030725C303030755C3030306E5C303030645C3030306C5C303030615C303030675C303030655C3030306E} +\BKM@entry{id=2,dest={73756273656374696F6E2A2E34},srcline={115}}{5C3337365C3337375C3030304C5C3030306F5C303030675C303030695C3030306B} +\BKM@entry{id=3,dest={73756273756273656374696F6E2A2E36},srcline={136}}{5C3337365C3337375C3030304B5C3030306F5C3030306E5C303030745C303030725C303030615C303030705C3030306F5C303030735C303030695C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=4,dest={73756273756273656374696F6E2A2E38},srcline={141}}{5C3337365C3337375C303030495C3030306E5C303030645C303030695C303030725C303030655C3030306B5C303030745C303030655C303030725C3030305C3034305C303030425C303030655C303030775C303030655C303030695C30303073} +\BKM@entry{id=5,dest={73756273756273656374696F6E2A2E3130},srcline={146}}{5C3337365C3337375C303030505C303030725C303030695C3030306E5C3030307A5C303030695C303030705C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030765C3030306F5C3030306C5C3030306C5C303030735C303030745C3030305C3334345C3030306E5C303030645C303030695C303030675C303030655C3030306E5C3030305C3034305C303030495C3030306E5C303030645C303030755C3030306B5C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=6,dest={73756273656374696F6E2A2E3132},srcline={158}}{5C3337365C3337375C3030304D5C303030655C3030306E5C303030675C303030655C3030306E5C3030306C5C303030655C303030685C303030725C30303065} +\BKM@entry{id=7,dest={73756273756273656374696F6E2A2E3134},srcline={181}}{5C3337365C3337375C303030515C303030755C303030615C3030306E5C303030745C3030306F5C303030725C303030655C3030306E} +\BKM@entry{id=8,dest={73756273656374696F6E2A2E3136},srcline={198}}{5C3337365C3337375C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C3030305C3035305C303030415C303030625C303030625C303030695C3030306C5C303030645C303030755C3030306E5C303030675C303030655C3030306E5C3030305C303531} +\BKM@entry{id=9,dest={73756273756273656374696F6E2A2E3138},srcline={215}}{5C3337365C3337375C3030304B5C3030306F5C3030306D5C303030705C3030306F5C303030735C303030695C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=10,dest={73756273756273656374696F6E2A2E3230},srcline={228}}{5C3337365C3337375C303030535C303030755C303030725C3030306A5C303030655C3030306B5C303030745C303030695C30303076} +\BKM@entry{id=11,dest={73756273756273656374696F6E2A2E3232},srcline={245}}{5C3337365C3337375C303030495C3030306E5C3030306A5C303030655C3030306B5C303030745C303030695C30303076} +\BKM@entry{id=12,dest={73756273756273656374696F6E2A2E3234},srcline={260}}{5C3337365C3337375C303030425C303030695C3030306A5C303030655C3030306B5C303030745C303030695C303030765C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030555C3030306D5C3030306B5C303030655C303030685C303030725C303030615C303030625C303030625C303030695C3030306C5C303030645C303030755C3030306E5C30303067} +\BKM@entry{id=13,dest={73756273656374696F6E2A2E3236},srcline={271}}{5C3337365C3337375C303030525C303030655C303030655C3030306C5C3030306C5C303030655C3030305C3034305C3030305A5C303030615C303030685C3030306C5C303030655C3030306E} +\BKM@entry{id=14,dest={73756273756273656374696F6E2A2E3238},srcline={286}}{5C3337365C3337375C303030565C3030306F5C3030306C5C3030306C5C303030735C303030745C3030305C3334345C3030306E5C303030645C303030695C303030675C3030306B5C303030655C303030695C303030745C303030735C303030615C303030785C303030695C3030306F5C3030306D} +\BKM@entry{id=15,dest={73756273756273656374696F6E2A2E3330},srcline={290}}{5C3337365C3337375C303030445C303030725C303030655C303030695C303030655C303030635C3030306B5C303030735C303030755C3030306E5C303030675C3030306C5C303030655C303030695C303030635C303030685C303030755C3030306E5C30303067} +\BKM@entry{id=16,dest={73756273756273656374696F6E2A2E3332},srcline={294}}{5C3337365C3337375C303030415C303030725C303030635C303030685C303030695C3030306D5C303030655C303030645C303030695C303030735C303030635C303030685C303030655C303030735C3030305C3034305C303030505C303030725C303030695C3030306E5C3030307A5C303030695C30303070} +\BKM@entry{id=17,dest={73756273756273656374696F6E2A2E3334},srcline={303}}{5C3337365C3337375C303030535C303030755C303030705C303030725C303030655C3030306D5C303030755C3030306D5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030495C3030306E5C303030665C303030695C3030306D5C303030755C3030306D} +\BKM@entry{id=18,dest={73756273656374696F6E2A2E3336},srcline={343}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C3030307A5C303030655C3030306E5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030575C303030755C303030725C3030307A5C303030655C3030306C} +\BKM@entry{id=19,dest={73756273656374696F6E2A2E3338},srcline={382}}{5C3337365C3337375C3030304C5C3030306F5C303030675C303030615C303030725C303030695C303030745C303030685C3030306D5C303030755C30303073} +\BKM@entry{id=20,dest={73756273656374696F6E2A2E3430},srcline={414}}{5C3337365C3337375C303030445C303030695C303030655C3030305C3034305C303030455C303030785C303030705C3030306F5C3030306E5C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030305C3035305C3030305C3035305C303030785C3030305C3035315C3030305C3034305C3030303D5C3030305C3034305C303030655C303030785C3030305C303531} +\BKM@entry{id=21,dest={73756273756273656374696F6E2A2E3432},srcline={440}}{5C3337365C3337375C303030545C303030725C303030695C303030675C3030306F5C3030306E5C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030302D5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030485C303030795C303030705C303030655C303030725C303030625C303030655C3030306C5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=22,dest={73756273656374696F6E2A2E3434},srcline={465}}{5C3337365C3337375C303030565C303030655C3030306B5C303030745C3030306F5C303030725C303030655C3030306E} +\babel@aux{german}{} +\@writefile{toc}{\contentsline {section}{\nonumberline Grundlagen}{1}{section*.2}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Logik}{1}{subsection*.4}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Kontraposition}{1}{subsubsection*.6}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Indirekter Beweis}{1}{subsubsection*.8}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Prinzip der vollständigen Induktion}{1}{subsubsection*.10}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Mengenlehre}{1}{subsection*.12}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Quantoren}{1}{subsubsection*.14}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Funktionen (Abbildungen)}{1}{subsection*.16}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Komposition}{1}{subsubsection*.18}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Surjektiv}{1}{subsubsection*.20}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Injektiv}{1}{subsubsection*.22}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Bijektiv und Umkehrabbildung}{1}{subsubsection*.24}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Reelle Zahlen}{1}{subsection*.26}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Vollständigkeitsaxiom}{1}{subsubsection*.28}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dreiecksungleichung}{1}{subsubsection*.30}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Archimedisches Prinzip}{1}{subsubsection*.32}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Supremum und Infimum}{1}{subsubsection*.34}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Potenzen und Wurzel}{1}{subsection*.36}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Logarithmus}{1}{subsection*.38}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Die Exponentialfunktion ($\exp (x) = e^x$)}{1}{subsection*.40}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Trigonometrische- und Hyperbelfunktionen}{1}{subsubsection*.42}\protected@file@percent } +\BKM@entry{id=23,dest={73756273756273656374696F6E2A2E3436},srcline={478}}{5C3337365C3337375C303030435C303030615C303030755C303030635C303030685C303030795C3030302D5C303030535C303030635C303030685C303030775C303030615C303030725C3030307A} +\BKM@entry{id=24,dest={73756273656374696F6E2A2E3438},srcline={487}}{5C3337365C3337375C3030304B5C3030306F5C3030306D5C303030705C3030306C5C303030655C303030785C303030655C3030305C3034305C3030305A5C303030615C303030685C3030306C5C303030655C3030306E} +\BKM@entry{id=25,dest={73756273756273656374696F6E2A2E3530},srcline={509}}{5C3337365C3337375C303030455C303030755C3030306C5C303030655C303030725C303030735C303030635C303030685C303030655C3030305C3034305C303030465C3030306F5C303030725C3030306D5C303030655C3030306C5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030455C303030755C3030306C5C303030655C303030725C303030735C3030305C3034305C303030495C303030645C303030655C3030306E5C303030745C303030695C303030745C3030305C3334345C30303074} +\BKM@entry{id=26,dest={73756273756273656374696F6E2A2E3532},srcline={524}}{5C3337365C3337375C303030505C3030306F5C3030306C5C303030615C303030725C303030665C3030306F5C303030725C3030306D} +\BKM@entry{id=27,dest={73756273656374696F6E2A2E3534},srcline={547}}{5C3337365C3337375C303030465C303030755C3030306E5C303030645C303030615C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C303030735C303030615C303030745C3030307A5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030415C3030306C5C303030675C303030655C303030625C303030725C30303061} +\BKM@entry{id=28,dest={73756273756273656374696F6E2A2E3536},srcline={557}}{5C3337365C3337375C3030304D5C303030695C303030745C303030745C303030655C303030725C3030306E5C303030615C303030635C303030685C303030745C303030735C303030665C3030306F5C303030725C3030306D5C303030655C3030306C} +\BKM@entry{id=29,dest={73756273756273656374696F6E2A2E3538},srcline={565}}{5C3337365C3337375C303030425C303030695C3030306E5C3030306F5C3030306D5C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030465C3030306F5C303030725C3030306D5C303030655C3030306C5C3030306E} +\BKM@entry{id=30,dest={73756273756273656374696F6E2A2E3630},srcline={590}}{5C3337365C3337375C303030425C303030695C3030306E5C3030306F5C3030306D5C303030695C303030735C303030635C303030685C303030655C303030725C3030305C3034305C3030304C5C303030655C303030685C303030725C303030735C303030615C303030745C3030307A} +\BKM@entry{id=31,dest={73756273656374696F6E2A2E3632},srcline={599}}{5C3337365C3337375C303030535C3030306F5C3030306E5C303030735C303030745C303030695C303030675C303030655C30303073} +\BKM@entry{id=32,dest={73756273756273656374696F6E2A2E3634},srcline={605}}{5C3337365C3337375C303030445C303030695C303030655C3030305C3034305C303030425C303030655C303030725C3030306E5C3030306F5C303030755C303030695C3030306C5C3030306C5C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030555C3030306E5C303030675C3030306C5C303030655C303030695C303030635C303030685C303030755C3030306E5C30303067} +\BKM@entry{id=33,dest={73756273756273656374696F6E2A2E3636},srcline={614}}{5C3337365C3337375C303030575C303030615C3030306C5C3030306C5C303030695C303030735C303030635C303030685C303030655C303030735C3030305C3034305C303030505C303030725C3030306F5C303030645C303030755C3030306B5C30303074} +\BKM@entry{id=34,dest={73756273756273656374696F6E2A2E3638},srcline={622}}{5C3337365C3337375C303030475C303030655C303030725C303030615C303030645C303030655C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030555C3030306E5C303030675C303030655C303030725C303030615C303030645C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=35,dest={73756273656374696F6E2A2E3730},srcline={648}}{5C3337365C3337375C303030545C303030725C303030695C303030675C3030306F5C3030306E5C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030303A5C3030305C3034305C303030575C303030655C303030725C303030745C303030655C303030745C303030615C303030625C303030655C3030306C5C3030306C5C30303065} +\BKM@entry{id=36,dest={73756273656374696F6E2A2E3732},srcline={667}}{5C3337365C3337375C303030545C303030725C303030695C303030675C3030306F5C3030306E5C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030485C303030795C303030705C303030655C303030725C303030625C3030306F5C3030306C5C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030495C303030645C303030655C3030306E5C303030745C303030695C303030745C3030305C3334345C303030745C303030655C3030306E} +\BKM@entry{id=37,dest={73756273756273656374696F6E2A2E3734},srcline={686}}{5C3337365C3337375C303030545C303030725C303030695C303030675C3030306F5C3030306E5C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030415C303030645C303030645C303030695C303030745C303030695C3030306F5C3030306E5C303030735C303030745C303030685C303030655C3030306F5C303030725C303030655C3030306D5C30303065} +\BKM@entry{id=38,dest={73756273756273656374696F6E2A2E3736},srcline={706}}{5C3337365C3337375C303030485C303030795C303030705C303030655C303030725C303030625C3030306F5C3030306C5C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030415C303030645C303030645C303030695C303030745C303030695C3030306F5C3030306E5C303030735C303030745C303030685C303030655C3030306F5C303030725C303030655C3030306D5C30303065} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Vektoren}{2}{subsection*.44}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Cauchy-Schwarz}{2}{subsubsection*.46}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Komplexe Zahlen}{2}{subsection*.48}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Eulersche Formel und Eulers Identität}{2}{subsubsection*.50}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Polarform}{2}{subsubsection*.52}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Fundamentalsatz der Algebra}{2}{subsection*.54}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Mitternachtsformel}{2}{subsubsection*.56}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Binomische Formeln}{2}{subsubsection*.58}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Binomischer Lehrsatz}{2}{subsubsection*.60}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Sonstiges}{2}{subsection*.62}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Die Bernouillische Ungleichung}{2}{subsubsection*.64}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Wallisches Produkt}{2}{subsubsection*.66}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Gerade und Ungerade Funktionen}{2}{subsubsection*.68}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Trigonometrische Funktionen: Wertetabelle}{2}{subsection*.70}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Trigonometrische und Hyperbolische Identitäten}{2}{subsection*.72}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Trigonometrische Additionstheoreme}{2}{subsubsection*.74}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Hyperbolische Additionstheoreme}{2}{subsubsection*.76}\protected@file@percent } +\BKM@entry{id=39,dest={73656374696F6E2A2E3738},srcline={724}}{5C3337365C3337375C303030465C3030306F5C3030306C5C303030675C303030655C3030306E5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030525C303030655C303030695C303030685C303030655C3030306E} +\BKM@entry{id=40,dest={73756273656374696F6E2A2E3830},srcline={727}}{5C3337365C3337375C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C303030745C3030305C3034305C303030655C303030695C3030306E5C303030655C303030725C3030305C3034305C303030465C3030306F5C3030306C5C303030675C30303065} +\BKM@entry{id=41,dest={73756273656374696F6E2A2E3832},srcline={750}}{5C3337365C3337375C3030304D5C3030306F5C3030306E5C3030306F5C303030745C3030306F5C3030306E5C303030695C303030655C3030305C3034305C303030625C303030655C303030695C3030305C3034305C303030465C3030306F5C3030306C5C303030675C303030655C3030306E} +\BKM@entry{id=42,dest={73756273656374696F6E2A2E3834},srcline={766}}{5C3337365C3337375C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A5C3030306B5C303030725C303030695C303030745C303030655C303030725C303030695C303030655C3030306E} +\BKM@entry{id=43,dest={73756273756273656374696F6E2A2E3836},srcline={768}}{5C3337365C3337375C3030304D5C3030306F5C3030306E5C3030306F5C303030745C3030306F5C3030306E5C303030655C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A} +\BKM@entry{id=44,dest={73756273756273656374696F6E2A2E3838},srcline={779}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030525C303030655C303030635C303030685C303030655C3030306E5C303030725C303030655C303030675C303030655C3030306C5C3030306E5C3030305C3034305C303030755C3030306E5C303030745C303030655C303030725C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A5C303030625C303030655C303030645C303030695C3030306E5C303030675C303030755C3030306E5C30303067} +\BKM@entry{id=45,dest={73756273756273656374696F6E2A2E3930},srcline={793}}{5C3337365C3337375C303030445C3030306F5C3030306D5C303030695C3030306E5C303030615C3030306E5C3030307A} +\BKM@entry{id=46,dest={73756273756273656374696F6E2A2E3932},srcline={801}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=47,dest={73756273656374696F6E2A2E3934},srcline={808}}{5C3337365C3337375C303030545C303030655C303030695C3030306C5C303030665C3030306F5C3030306C5C303030675C303030655C3030306E5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030485C3030305C3334345C303030755C303030665C303030755C3030306E5C303030675C303030735C303030705C303030755C3030306E5C3030306B5C303030745C30303065} +\BKM@entry{id=48,dest={73756273756273656374696F6E2A2E3936},srcline={810}}{5C3337365C3337375C303030545C303030655C303030695C3030306C5C303030665C3030306F5C3030306C5C303030675C30303065} +\BKM@entry{id=49,dest={73756273756273656374696F6E2A2E3938},srcline={814}}{5C3337365C3337375C303030485C3030305C3334345C303030755C303030665C303030755C3030306E5C303030675C303030735C303030705C303030755C3030306E5C3030306B5C30303074} +\BKM@entry{id=50,dest={73756273756273656374696F6E2A2E313030},srcline={827}}{5C3337365C3337375C3030304C5C303030695C3030306D5C303030655C303030735C3030305C3034305C303030735C303030755C303030705C303030655C303030725C303030695C3030306F5C303030725C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030695C3030306E5C303030665C303030655C303030725C303030695C3030306F5C30303072} +\BKM@entry{id=51,dest={73756273756273656374696F6E2A2E313032},srcline={858}}{5C3337365C3337375C303030425C3030306F5C3030306C5C3030307A5C303030615C3030306E5C3030306F5C3030305C3034305C303030575C303030655C303030695C303030655C303030725C303030735C303030745C303030725C303030615C303030735C30303073} +\BKM@entry{id=52,dest={73756273656374696F6E2A2E313034},srcline={867}}{5C3337365C3337375C303030435C303030615C303030755C303030635C303030685C303030795C3030305C3034305C303030465C3030306F5C3030306C5C303030675C303030655C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030435C303030615C303030755C303030635C303030685C303030795C3030302D5C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=53,dest={73756273656374696F6E2A2E313036},srcline={877}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030435C303030615C303030755C303030635C303030685C303030795C3030302D5C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=54,dest={73756273656374696F6E2A2E313038},srcline={888}}{5C3337365C3337375C303030465C3030306F5C3030306C5C303030675C303030655C3030306E5C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C303030645C3030305C3034305C3030306F5C303030645C303030655C303030725C3030305C3034305C30303043} +\BKM@entry{id=55,dest={73756273756273656374696F6E2A2E313130},srcline={898}}{5C3337365C3337375C303030425C303030655C303030735C303030635C303030685C303030725C3030305C3334345C3030306E5C3030306B5C303030745C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C30303064} +\BKM@entry{id=56,dest={73756273656374696F6E2A2E313132},srcline={907}}{5C3337365C3337375C303030525C303030655C303030695C303030685C303030655C3030306E} +\BKM@entry{id=57,dest={73756273756273656374696F6E2A2E313134},srcline={917}}{5C3337365C3337375C303030435C303030615C303030755C303030635C303030685C303030795C3030305C3034305C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=58,dest={73756273656374696F6E2A2E313136},srcline={926}}{5C3337365C3337375C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A5C3030306B5C303030725C303030695C303030745C303030655C303030725C303030695C303030655C3030306E5C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C303030525C303030655C303030695C303030685C303030655C3030306E} +\BKM@entry{id=59,dest={73756273756273656374696F6E2A2E313138},srcline={930}}{5C3337365C3337375C303030515C303030755C3030306F5C303030745C303030695C303030655C3030306E5C303030745C303030655C3030306E5C3030306B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=60,dest={73756273756273656374696F6E2A2E313230},srcline={941}}{5C3337365C3337375C303030575C303030755C303030725C3030307A5C303030655C3030306C5C3030306B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=61,dest={73756273756273656374696F6E2A2E313232},srcline={952}}{5C3337365C3337375C3030304D5C303030695C3030306E5C3030306F5C303030725C303030615C3030306E5C303030745C303030655C3030306E5C3030306B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=62,dest={73756273756273656374696F6E2A2E313234},srcline={956}}{5C3337365C3337375C3030304D5C303030615C3030306A5C3030306F5C303030725C303030615C3030306E5C303030745C303030655C3030306E5C3030306B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=63,dest={73756273656374696F6E2A2E313236},srcline={963}}{5C3337365C3337375C303030415C303030625C303030735C3030306F5C3030306C5C303030755C303030745C303030655C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A} +\BKM@entry{id=64,dest={73756273756273656374696F6E2A2E313238},srcline={968}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\@writefile{toc}{\contentsline {section}{\nonumberline Folgen und Reihen}{3}{section*.78}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Grenzwert einer Folge}{3}{subsection*.80}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Monotonie bei Folgen}{3}{subsection*.82}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Konvergenzkriterien}{3}{subsection*.84}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Monotone Konvergenz}{3}{subsubsection*.86}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Rechenregeln unter Konvergenzbedingung}{3}{subsubsection*.88}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dominanz}{3}{subsubsection*.90}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{3}{subsubsection*.92}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Teilfolgen und Häufungspunkte}{3}{subsection*.94}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Teilfolge}{3}{subsubsection*.96}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Häufungspunkt}{3}{subsubsection*.98}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Limes superior und inferior}{3}{subsubsection*.100}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Bolzano Weierstrass}{3}{subsubsection*.102}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Cauchy Folge und Cauchy-Kriterium}{3}{subsection*.104}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Satz: Cauchy-Kriterium}{3}{subsection*.106}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Folgen in $\mathbb {R}^d$ oder $\mathbb {C}$}{3}{subsection*.108}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Beschränkt in $\mathbb {R}^d$}{3}{subsubsection*.110}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Reihen}{3}{subsection*.112}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Cauchy Kriterium}{3}{subsubsection*.114}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Konvergenzkriterien für Reihen}{3}{subsection*.116}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Quotientenkriterium}{3}{subsubsection*.118}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Wurzelkriterium}{3}{subsubsection*.120}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Minorantenkriterium}{3}{subsubsection*.122}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Majorantenkriterium}{3}{subsubsection*.124}\protected@file@percent } +\BKM@entry{id=65,dest={73756273656374696F6E2A2E313330},srcline={979}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C3030304C5C303030655C303030695C303030625C3030306E5C303030695C303030745C3030307A5C3030306B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D} +\BKM@entry{id=66,dest={73756273656374696F6E2A2E313332},srcline={990}}{5C3337365C3337375C303030535C303030745C303030615C3030306E5C303030645C303030615C303030725C303030645C3030305C3034305C303030525C303030655C303030695C303030685C303030655C3030306E5C303030615C303030625C303030735C303030635C303030685C3030305C3334345C303030745C3030307A5C303030755C3030306E5C30303067} +\BKM@entry{id=67,dest={73756273656374696F6E2A2E313334},srcline={997}}{5C3337365C3337375C303030475C303030655C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030525C303030655C303030695C303030685C30303065} +\BKM@entry{id=68,dest={73756273656374696F6E2A2E313336},srcline={1006}}{5C3337365C3337375C303030575C303030695C303030635C303030685C303030745C303030695C303030675C303030655C3030305C3034305C303030525C303030655C303030695C303030685C303030655C3030306E} +\BKM@entry{id=69,dest={73756273656374696F6E2A2E313338},srcline={1015}}{5C3337365C3337375C303030575C303030695C303030635C303030685C303030745C303030695C303030675C303030655C3030305C3034305C303030505C3030306F5C303030745C303030655C3030306E5C3030307A5C303030725C303030655C303030695C303030685C303030655C3030306E} +\BKM@entry{id=70,dest={73756273656374696F6E2A2E313430},srcline={1043}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C3030307A5C303030725C303030655C303030695C303030685C303030655C3030306E} +\BKM@entry{id=71,dest={73756273756273656374696F6E2A2E313432},srcline={1051}}{5C3337365C3337375C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A5C303030725C303030615C303030645C303030695C303030755C30303073} +\BKM@entry{id=72,dest={73756273756273656374696F6E2A2E313434},srcline={1066}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C3030307A5C303030725C303030655C303030695C303030685C303030655C3030306E5C3030305C3034305C3030306B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030695C303030655C303030725C303030655C3030306E5C3030305C3034305C303030675C3030306C5C303030655C303030695C303030635C303030685C3030306D5C3030305C3334345C303030735C303030735C303030695C30303067} +\BKM@entry{id=73,dest={73756273756273656374696F6E2A2E313436},srcline={1077}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C3030307A5C303030725C303030655C303030695C303030685C303030655C3030306E5C3030305C3034305C303030735C303030695C3030306E5C303030645C3030305C3034305C303030735C303030745C303030655C303030745C303030695C30303067} +\BKM@entry{id=74,dest={73756273756273656374696F6E2A2E313438},srcline={1082}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C3030307A5C303030725C303030655C303030695C303030685C303030655C3030306E5C3030305C3034305C303030735C303030695C3030306E5C303030645C3030305C3034305C303030645C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C3030307A5C303030695C303030655C303030725C303030625C303030615C30303072} +\BKM@entry{id=75,dest={73756273756273656374696F6E2A2E313530},srcline={1095}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C3030307A5C303030725C303030655C303030695C303030685C303030655C3030306E5C3030305C3034305C303030735C303030695C3030306E5C303030645C3030305C3034305C303030695C3030306E5C303030745C303030655C303030675C303030725C303030695C303030655C303030725C303030625C303030615C30303072} +\BKM@entry{id=76,dest={73756273656374696F6E2A2E313532},srcline={1110}}{5C3337365C3337375C303030575C303030695C303030635C303030685C303030745C303030695C303030675C303030655C3030305C3034305C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C303030745C30303065} +\BKM@entry{id=77,dest={73756273656374696F6E2A2E313534},srcline={1136}}{5C3337365C3337375C303030545C303030695C303030705C303030705C303030735C3030305C3034305C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C303030745C303030625C303030655C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C30303067} +\BKM@entry{id=78,dest={73756273756273656374696F6E2A2E313536},srcline={1150}}{5C3337365C3337375C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C303030745C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C3030304B5C3030306F5C3030306D5C303030705C3030306F5C303030735C303030695C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C303030735C303030745C303030655C303030745C303030695C303030675C303030655C303030725C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Absolute Konvergenz}{4}{subsection*.126}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{4}{subsubsection*.128}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Satz: Leibnitzkriterium}{4}{subsection*.130}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Standard Reihenabschätzung}{4}{subsection*.132}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Geometrische Reihe}{4}{subsection*.134}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Wichtige Reihen}{4}{subsection*.136}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Wichtige Potenzreihen}{4}{subsection*.138}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Potenzreihen}{4}{subsection*.140}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Konvergenzradius}{4}{subsubsection*.142}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Potenzreihen konvergieren gleichmässig}{4}{subsubsection*.144}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Potenzreihen sind stetig}{4}{subsubsection*.146}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Potenzreihen sind differenzierbar}{4}{subsubsection*.148}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Potenzreihen sind integrierbar}{4}{subsubsection*.150}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Wichtige Grenzwerte}{4}{subsection*.152}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Tipps Grenzwertberechnung}{4}{subsection*.154}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Grenzwert und Kompositionen stetiger Funktionen}{4}{subsubsection*.156}\protected@file@percent } +\BKM@entry{id=79,dest={73656374696F6E2A2E313538},srcline={1162}}{5C3337365C3337375C303030535C303030745C303030655C303030745C303030695C303030675C3030306B5C303030655C303030695C303030745C3030305C3034305C303030615C303030755C303030665C3030305C3034305C303030525C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030525C30303064} +\BKM@entry{id=80,dest={73756273656374696F6E2A2E313630},srcline={1165}}{5C3337365C3337375C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C303030745C3030305C3034305C303030655C303030695C3030306E5C303030655C303030725C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=81,dest={73756273756273656374696F6E2A2E313632},srcline={1167}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030415C303030625C303030735C303030635C303030685C3030306C5C303030755C303030735C30303073} +\BKM@entry{id=82,dest={73756273756273656374696F6E2A2E313634},srcline={1179}}{5C3337365C3337375C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E5C3030303A5C3030305C3034305C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C303030745C3030305C3034305C303030655C303030695C3030306E5C303030655C303030725C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=83,dest={73756273756273656374696F6E2A2E313636},srcline={1189}}{5C3337365C3337375C303030535C303030745C303030655C303030745C303030695C303030675C3030305C3034305C303030695C3030306E5C3030305C3034305C303030785C303030305C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030735C303030745C303030655C303030745C303030695C303030675C3030305C3034305C303030655C303030725C303030675C3030305C3334345C3030306E5C3030307A5C303030625C303030615C30303072} +\BKM@entry{id=84,dest={73756273656374696F6E2A2E313638},srcline={1198}}{5C3337365C3337375C303030465C3030305C3337345C303030725C3030305C3034305C303030525C3030303A5C3030305C3034305C3030304C5C303030695C3030306E5C3030306B5C303030735C3030302D5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030525C303030655C303030635C303030685C303030745C303030735C303030735C303030655C303030695C303030745C303030695C303030675C303030655C303030725C3030305C3034305C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C30303074} +\BKM@entry{id=85,dest={73756273756273656374696F6E2A2E313730},srcline={1219}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=86,dest={73756273656374696F6E2A2E313732},srcline={1224}}{5C3337365C3337375C303030465C3030305C3337345C303030725C3030305C3034305C303030525C3030303A5C3030305C3034305C3030304D5C3030306F5C3030306E5C3030306F5C303030745C3030306F5C3030306E5C303030695C303030655C3030305C3034305C303030625C303030655C303030695C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=87,dest={73756273656374696F6E2A2E313734},srcline={1239}}{5C3337365C3337375C303030465C3030305C3337345C303030725C3030305C3034305C303030525C303030645C3030303A5C3030305C3034305C303030475C303030725C303030655C3030306E5C3030307A5C303030775C303030655C303030725C303030745C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C30303064} +\BKM@entry{id=88,dest={73756273656374696F6E2A2E313736},srcline={1252}}{5C3337365C3337375C303030535C303030745C303030655C303030745C303030695C303030675C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=89,dest={73756273756273656374696F6E2A2E313738},srcline={1260}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030565C303030655C3030306B5C303030745C3030306F5C303030725C303030725C303030615C303030755C3030306D5C3030305C3034305C303030435C303030305C3030305C3035305C3030302C5C3030305C3034305C303030525C3030305C303531} +\BKM@entry{id=90,dest={73756273756273656374696F6E2A2E313830},srcline={1268}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=91,dest={73756273656374696F6E2A2E313832},srcline={1273}}{5C3337365C3337375C3030304C5C303030695C303030705C303030735C303030635C303030685C303030695C303030745C3030307A5C3030305C3034305C303030735C303030745C303030655C303030745C303030695C30303067} +\BKM@entry{id=92,dest={73756273756273656374696F6E2A2E313834},srcline={1284}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=93,dest={73756273656374696F6E2A2E313836},srcline={1289}}{5C3337365C3337375C3030304B5C3030306F5C3030306D5C303030705C303030615C3030306B5C30303074} +\BKM@entry{id=94,dest={73756273756273656374696F6E2A2E313838},srcline={1300}}{5C3337365C3337375C3030304C5C303030655C3030306D5C3030306D5C30303061} +\BKM@entry{id=95,dest={73756273756273656374696F6E2A2E313930},srcline={1309}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030455C303030785C303030745C303030725C303030655C3030306D5C303030755C3030306D5C303030735C303030615C303030745C3030307A} +\BKM@entry{id=96,dest={73756273656374696F6E2A2E313932},srcline={1320}}{5C3337365C3337375C303030465C3030305C3337345C303030725C3030305C3034305C303030525C3030303A5C3030305C3034305C303030575C303030655C303030695C303030655C303030725C303030735C303030745C303030725C303030615C303030735C303030735C303030275C303030735C303030635C303030685C303030655C303030735C3030305C3034305C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D5C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C303030535C303030745C303030655C303030745C303030695C303030675C3030306B5C303030655C303030695C30303074} +\BKM@entry{id=97,dest={73756273656374696F6E2A2E313934},srcline={1334}}{5C3337365C3337375C303030465C3030305C3337345C303030725C3030305C3034305C303030525C3030303A5C3030305C3034305C303030445C303030655C303030725C3030305C3034305C3030305A5C303030775C303030695C303030735C303030635C303030685C303030655C3030306E5C303030775C303030655C303030725C303030745C303030735C303030615C303030745C3030307A} +\BKM@entry{id=98,dest={73756273756273656374696F6E2A2E313936},srcline={1344}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=99,dest={73756273756273656374696F6E2A2E313938},srcline={1353}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=100,dest={73756273656374696F6E2A2E323030},srcline={1364}}{5C3337365C3337375C303030475C3030306C5C303030655C303030695C303030635C303030685C3030306D5C3030305C3334345C303030735C303030735C303030695C303030675C303030655C3030305C3034305C303030535C303030745C303030655C303030745C303030695C303030675C3030306B5C303030655C303030695C30303074} +\BKM@entry{id=101,dest={73756273756273656374696F6E2A2E323032},srcline={1374}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=102,dest={73756273756273656374696F6E2A2E323034},srcline={1378}}{5C3337365C3337375C303030535C3030305C3334345C303030745C3030307A5C30303065} +\BKM@entry{id=103,dest={73756273656374696F6E2A2E323036},srcline={1389}}{5C3337365C3337375C303030505C303030755C3030306E5C3030306B5C303030745C303030775C303030655C303030695C303030735C303030655C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030675C3030306C5C303030655C303030695C303030635C303030685C3030306D5C3030305C3334345C303030735C303030735C303030695C303030675C303030655C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A} +\BKM@entry{id=104,dest={73756273756273656374696F6E2A2E323038},srcline={1392}}{5C3337365C3337375C303030535C303030755C303030705C303030725C303030655C3030306D5C303030755C3030306D5C303030735C3030306E5C3030306F5C303030725C3030306D} +\@writefile{toc}{\contentsline {section}{\nonumberline Stetigkeit auf $\mathbb {R}$ und $\mathbb {R}^d$}{5}{section*.158}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Grenzwert einer Funktion}{5}{subsection*.160}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Der Abschluss}{5}{subsubsection*.162}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Definition: Grenzwert einer Funktion}{5}{subsubsection*.164}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Stetig in $x_0$ und stetig ergänzbar}{5}{subsubsection*.166}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Für $\mathbb {R}$: Links- und Rechtsseitiger Grenzwert}{5}{subsection*.168}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{5}{subsubsection*.170}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Für $\mathbb {R}$: Monotonie bei Funktionen}{5}{subsection*.172}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Für $\mathbb {R}^d$: Grenzwert in $\mathbb {R}^d$}{5}{subsection*.174}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Stetige Funktionen}{5}{subsection*.176}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Vektorraum $C^0(\Omega , \mathbb {R})$}{5}{subsubsection*.178}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{5}{subsubsection*.180}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Lipschitz stetig}{5}{subsection*.182}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{5}{subsubsection*.184}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Kompakt}{5}{subsection*.186}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Lemma}{5}{subsubsection*.188}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Extremumsatz}{5}{subsubsection*.190}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Für $\mathbb {R}$: Weierstrass'sches Kriterium für Stetigkeit}{5}{subsection*.192}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Für $\mathbb {R}$: Der Zwischenwertsatz}{5}{subsection*.194}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{5}{subsubsection*.196}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{5}{subsubsection*.198}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Gleichmässige Stetigkeit}{5}{subsection*.200}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{5}{subsubsection*.202}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Sätze}{5}{subsubsection*.204}\protected@file@percent } +\BKM@entry{id=105,dest={73756273756273656374696F6E2A2E323130},srcline={1401}}{5C3337365C3337375C303030505C303030755C3030306E5C3030306B5C303030745C303030775C303030655C303030695C303030735C303030655C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A} +\BKM@entry{id=106,dest={73756273756273656374696F6E2A2E323132},srcline={1410}}{5C3337365C3337375C303030475C3030306C5C303030655C303030695C303030635C303030685C3030306D5C3030305C3334345C303030735C303030735C303030695C303030675C303030655C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A} +\BKM@entry{id=107,dest={73756273756273656374696F6E2A2E323134},srcline={1420}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=108,dest={73756273656374696F6E2A2E323136},srcline={1425}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030445C303030655C3030305C3034305C3030304D5C3030306F5C303030725C303030675C303030615C3030306E5C303030735C303030635C303030685C303030655C3030305C3034305C303030525C303030655C303030675C303030655C3030306C5C3030306E} +\BKM@entry{id=109,dest={73656374696F6E2A2E323138},srcline={1447}}{5C3337365C3337375C303030545C3030306F5C303030705C3030306F5C3030306C5C3030306F5C303030675C303030695C30303065} +\BKM@entry{id=110,dest={73756273656374696F6E2A2E323230},srcline={1450}}{5C3337365C3337375C3030304F5C303030665C303030665C303030655C3030306E5C303030655C3030305C3034305C3030304D5C303030655C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=111,dest={73756273756273656374696F6E2A2E323232},srcline={1452}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C3030306F5C303030665C303030665C303030655C3030306E5C303030655C3030305C3034305C303030425C303030615C3030306C5C3030306C} +\BKM@entry{id=112,dest={73756273756273656374696F6E2A2E323234},srcline={1460}}{5C3337365C3337375C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E5C3030303A5C3030305C3034305C3030304F5C303030665C303030665C303030655C3030306E5C303030655C3030305C3034305C3030304D5C303030655C3030306E5C303030675C303030655C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030495C3030306E5C3030306E5C303030655C303030725C303030655C303030725C3030305C3034305C303030505C303030755C3030306E5C3030306B5C30303074} +\BKM@entry{id=113,dest={73756273756273656374696F6E2A2E323236},srcline={1471}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030455C303030695C303030675C303030655C3030306E5C303030735C303030635C303030685C303030615C303030665C303030745C303030655C3030306E5C3030305C3034305C3030306F5C303030665C303030665C303030655C3030306E5C303030655C303030725C3030305C3034305C3030304D5C303030655C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=114,dest={73756273656374696F6E2A2E323238},srcline={1482}}{5C3337365C3337375C303030415C303030625C303030675C303030655C303030635C303030685C3030306C5C3030306F5C303030735C303030735C303030655C3030306E5C303030655C3030305C3034305C3030304D5C303030655C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=115,dest={73756273756273656374696F6E2A2E323330},srcline={1486}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030455C303030695C303030675C303030655C3030306E5C303030735C303030635C303030685C303030615C303030665C303030745C303030655C3030306E5C3030305C3034305C303030615C303030625C303030675C303030655C303030735C303030635C303030685C3030306C5C3030306F5C303030735C303030735C303030655C3030306E5C303030655C303030725C3030305C3034305C3030304D5C303030655C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=116,dest={73756273756273656374696F6E2A2E323332},srcline={1495}}{5C3337365C3337375C303030425C303030655C3030306D5C303030655C303030725C3030306B5C303030755C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=117,dest={73756273656374696F6E2A2E323334},srcline={1502}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030495C3030306E5C3030306E5C303030655C303030725C303030655C3030302C5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030415C303030625C303030735C303030635C303030685C3030306C5C303030755C303030735C303030735C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030525C303030615C3030306E5C303030645C3030305C3034305C303030655C303030695C3030306E5C303030655C303030725C3030305C3034305C3030304D5C303030655C3030306E5C303030675C30303065} +\BKM@entry{id=118,dest={73756273756273656374696F6E2A2E323336},srcline={1505}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030495C3030306E5C3030306E5C303030655C303030725C30303065} +\BKM@entry{id=119,dest={73756273756273656374696F6E2A2E323338},srcline={1516}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030415C303030625C303030735C303030635C303030685C3030306C5C303030755C303030735C30303073} +\BKM@entry{id=120,dest={73756273756273656374696F6E2A2E323430},srcline={1529}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030525C303030615C3030306E5C30303064} +\BKM@entry{id=121,dest={73756273756273656374696F6E2A2E323432},srcline={1538}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030455C303030695C303030675C303030655C3030306E5C303030735C303030635C303030685C303030615C303030665C303030745C303030655C3030306E} +\BKM@entry{id=122,dest={73756273656374696F6E2A2E323434},srcline={1549}}{5C3337365C3337375C303030545C3030306F5C303030705C3030306F5C3030306C5C3030306F5C303030675C303030695C303030735C303030635C303030685C303030655C303030735C3030305C3034305C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D5C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C303030535C303030745C303030655C303030745C303030695C303030675C3030306B5C303030655C303030695C30303074} +\BKM@entry{id=123,dest={73756273756273656374696F6E2A2E323436},srcline={1577}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030575C303030655C303030695C303030655C303030725C303030735C303030745C303030725C303030615C303030735C303030735C303030275C303030735C303030635C303030685C303030655C303030735C3030305C3034305C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D5C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C303030535C303030745C303030655C303030745C303030695C303030675C3030306B5C303030655C303030695C30303074} +\BKM@entry{id=124,dest={73756273756273656374696F6E2A2E323438},srcline={1593}}{5C3337365C3337375C303030545C3030306F5C303030705C3030306F5C3030306C5C3030306F5C303030675C303030695C303030735C303030635C303030685C303030655C303030735C3030305C3034305C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D5C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C303030535C303030745C303030655C303030745C303030695C303030675C3030306B5C303030655C303030695C30303074} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Punktweise und gleichmässige Konvergenz}{6}{subsection*.206}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Supremumsnorm}{6}{subsubsection*.208}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Punktweise Konvergenz}{6}{subsubsection*.210}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Gleichmässige Konvergenz}{6}{subsubsection*.212}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{6}{subsubsection*.214}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Einschub: De Morgansche Regeln}{6}{subsection*.216}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\nonumberline Topologie}{6}{section*.218}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Offene Mengen}{6}{subsection*.220}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Der offene Ball}{6}{subsubsection*.222}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Definition: Offene Menge und Innerer Punkt}{6}{subsubsection*.224}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Eigenschaften offener Mengen}{6}{subsubsection*.226}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Abgechlossene Mengen}{6}{subsection*.228}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Eigenschaften abgeschlossener Mengen}{6}{subsubsection*.230}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Bemerkungen}{6}{subsubsection*.232}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Das Innere, der Abschluss und der Rand einer Menge}{6}{subsection*.234}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Das Innere}{6}{subsubsection*.236}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Der Abschluss}{6}{subsubsection*.238}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Der Rand}{6}{subsubsection*.240}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Eigenschaften}{6}{subsubsection*.242}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Topologisches Kriterium für Stetigkeit}{6}{subsection*.244}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Weierstrass'sches Kriterium für Stetigkeit}{6}{subsubsection*.246}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Topologisches Kriterium für Stetigkeit}{6}{subsubsection*.248}\protected@file@percent } +\BKM@entry{id=125,dest={73656374696F6E2A2E323530},srcline={1615}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C303030675C3030305C3034305C303030615C303030755C303030665C3030305C3034305C30303052} +\BKM@entry{id=126,dest={73756273656374696F6E2A2E323532},srcline={1617}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C} +\BKM@entry{id=127,dest={73756273756273656374696F6E2A2E323534},srcline={1629}}{5C3337365C3337375C303030475C303030655C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030425C303030655C303030645C303030655C303030755C303030745C303030755C3030306E5C30303067} +\BKM@entry{id=128,dest={73756273756273656374696F6E2A2E323536},srcline={1635}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=129,dest={73756273756273656374696F6E2A2E323538},srcline={1639}}{5C3337365C3337375C303030455C303030695C303030675C303030655C3030306E5C303030735C303030635C303030685C303030615C303030665C303030745C303030655C3030306E5C3030305C3034305C303030645C303030655C303030735C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C30303073} +\BKM@entry{id=130,dest={73756273656374696F6E2A2E323630},srcline={1656}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C3030304D5C303030695C303030745C303030745C303030655C3030306C5C303030775C303030655C303030725C303030745C303030735C303030615C303030745C3030307A} +\BKM@entry{id=131,dest={73756273756273656374696F6E2A2E323632},srcline={1664}}{5C3337365C3337375C3030304B5C3030306F5C303030725C3030306F5C3030306C5C3030306C5C303030615C30303072} +\BKM@entry{id=132,dest={73756273656374696F6E2A2E323634},srcline={1681}}{5C3337365C3337375C303030425C303030655C303030725C3030306E5C3030306F5C303030755C303030695C3030306C5C3030306C5C303030695C3030305C3034305C303030645C303030655C3030305C3034305C3030306C5C303030275C303030485C3030305C3336345C303030705C303030695C303030745C303030615C3030306C} +\BKM@entry{id=133,dest={73756273656374696F6E2A2E323636},srcline={1698}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030555C3030306D5C3030306B5C303030655C303030685C303030725C303030735C303030615C303030745C3030307A} +\BKM@entry{id=134,dest={73756273656374696F6E2A2E323638},srcline={1713}}{5C3337365C3337375C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030304B5C3030306C5C303030615C303030735C303030735C303030655C3030305C3034305C303030435C30303031} +\BKM@entry{id=135,dest={73756273756273656374696F6E2A2E323730},srcline={1721}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=136,dest={73756273656374696F6E2A2E323732},srcline={1732}}{5C3337365C3337375C303030485C3030305C3336365C303030685C303030655C303030725C303030655C3030305C3034305C303030415C303030625C3030306C5C303030655C303030695C303030745C303030755C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=137,dest={73756273756273656374696F6E2A2E323734},srcline={1740}}{5C3337365C3337375C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030304B5C3030306C5C303030615C303030735C303030735C303030655C3030305C3034305C303030435C3030306D} +\BKM@entry{id=138,dest={73756273656374696F6E2A2E323736},srcline={1753}}{5C3337365C3337375C303030545C303030615C303030795C3030306C5C3030306F5C303030725C3030305C3034305C303030455C3030306E5C303030745C303030775C303030695C303030635C3030306B5C3030306C5C303030755C3030306E5C30303067} +\BKM@entry{id=139,dest={73756273756273656374696F6E2A2E323738},srcline={1766}}{5C3337365C3337375C303030425C303030655C303030735C303030745C303030655C3030305C3034305C303030415C303030705C303030705C303030725C3030306F5C303030785C303030695C3030306D5C303030615C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=140,dest={73756273756273656374696F6E2A2E323830},srcline={1774}}{5C3337365C3337375C303030415C303030625C303030735C303030635C303030685C3030305C3334345C303030745C3030307A5C303030755C3030306E5C303030675C3030305C3034305C303030765C3030306F5C3030306D5C3030305C3034305C303030525C303030655C303030735C303030745C303030745C303030655C303030725C3030306D} +\BKM@entry{id=141,dest={73756273656374696F6E2A2E323832},srcline={1783}}{5C3337365C3337375C3030304C5C3030306F5C3030306B5C303030615C3030306C5C303030655C3030305C3034305C303030455C303030785C303030745C303030725C303030655C3030306D5C30303061} +\BKM@entry{id=142,dest={73756273756273656374696F6E2A2E323834},srcline={1793}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=143,dest={73756273756273656374696F6E2A2E323836},srcline={1809}}{5C3337365C3337375C303030415C3030306C5C3030306C5C303030675C303030655C3030306D5C303030655C303030695C3030306E5C303030655C303030725C303030655C303030725C3030305C3034305C303030535C303030615C303030745C3030307A} +\BKM@entry{id=144,dest={73756273656374696F6E2A2E323838},srcline={1824}}{5C3337365C3337375C3030304B5C3030306F5C3030306E5C303030765C303030655C303030785C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=145,dest={73656374696F6E2A2E323930},srcline={1842}}{5C3337365C3337375C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C303030675C3030305C3034305C303030615C303030755C303030665C3030305C3034305C30303052} +\BKM@entry{id=146,dest={73756273656374696F6E2A2E323932},srcline={1845}}{5C3337365C3337375C303030535C303030745C303030615C3030306D5C3030306D5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C3030305C3035305C303030535C303030465C3030305C303531} +\@writefile{toc}{\contentsline {section}{\nonumberline Differentialrechnung auf $\mathbb {R}$}{7}{section*.250}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Differential}{7}{subsection*.252}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Geometrische Bedeutung}{7}{subsubsection*.254}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{7}{subsubsection*.256}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Eigenschaften des Differentials}{7}{subsubsection*.258}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Mittelwertsatz}{7}{subsection*.260}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Korollar}{7}{subsubsection*.262}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Bernouilli de l'Hôpital}{7}{subsection*.264}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Umkehrsatz}{7}{subsection*.266}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Funktionen der Klasse $C^1$}{7}{subsection*.268}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{7}{subsubsection*.270}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Höhere Ableitungen}{7}{subsection*.272}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Funktionen der Klasse $C^m$}{7}{subsubsection*.274}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Taylor Entwicklung}{7}{subsection*.276}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Beste Approximation}{7}{subsubsection*.278}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Abschätzung vom Restterm}{7}{subsubsection*.280}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Lokale Extrema}{7}{subsection*.282}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{7}{subsubsection*.284}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Allgemeinerer Satz}{7}{subsubsection*.286}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Konvexe Funktionen}{7}{subsection*.288}\protected@file@percent } +\BKM@entry{id=147,dest={73756273756273656374696F6E2A2E323934},srcline={1854}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C303030745C303030695C3030306F5C3030306E5C303030735C3030306B5C3030306F5C3030306E5C303030735C303030745C303030615C3030306E5C303030745C30303065} +\BKM@entry{id=148,dest={73756273756273656374696F6E2A2E323936},srcline={1859}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\BKM@entry{id=149,dest={73756273656374696F6E2A2E323938},srcline={1868}}{5C3337365C3337375C303030455C303030695C303030675C303030655C3030306E5C303030735C303030635C303030685C303030615C303030665C303030745C303030655C3030306E5C3030305C3034305C303030765C3030306F5C3030306D5C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C3034305C3030305C3035305C303030755C3030306E5C303030645C3030305C3034305C303030525C3030302D5C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C303531} +\BKM@entry{id=150,dest={73756273756273656374696F6E2A2E333030},srcline={1870}}{5C3337365C3337375C3030304C5C303030695C3030306E5C303030655C303030615C303030725C303030695C303030745C3030305C3334345C30303074} +\BKM@entry{id=151,dest={73756273756273656374696F6E2A2E333032},srcline={1879}}{5C3337365C3337375C3030304D5C3030306F5C3030306E5C3030306F5C303030745C3030306F5C3030306E5C303030695C30303065} +\BKM@entry{id=152,dest={73756273756273656374696F6E2A2E333034},srcline={1888}}{5C3337365C3337375C303030475C303030655C303030625C303030695C303030655C303030745C303030735C303030615C303030645C303030645C303030695C303030745C303030695C303030765C303030695C303030745C3030305C3334345C30303074} +\BKM@entry{id=153,dest={73756273756273656374696F6E2A2E333036},srcline={1896}}{5C3337365C3337375C303030535C303030745C303030615C3030306E5C303030645C303030615C303030725C303030645C303030615C303030625C303030735C303030635C303030685C3030305C3334345C303030745C3030307A5C303030755C3030306E5C30303067} +\BKM@entry{id=154,dest={73756273756273656374696F6E2A2E333038},srcline={1904}}{5C3337365C3337375C3030304B5C3030306F5C303030725C3030306F5C3030306C5C3030306C5C303030615C303030725C3030305C3034305C303030625C303030655C3030307A5C3030305C3337345C303030675C3030306C5C303030695C303030635C303030685C3030305C3034305C303030675C3030306C5C3030306D5C3030302E5C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030655C303030675C303030655C3030306E5C3030307A} +\BKM@entry{id=155,dest={73756273656374696F6E2A2E333130},srcline={1915}}{5C3337365C3337375C303030545C303030725C303030655C303030705C303030705C303030655C3030306E5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=156,dest={73756273756273656374696F6E2A2E333132},srcline={1941}}{5C3337365C3337375C3030304C5C303030655C3030306D5C3030306D5C30303061} +\BKM@entry{id=157,dest={73756273656374696F6E2A2E333134},srcline={1950}}{5C3337365C3337375C303030445C303030695C303030655C3030305C3034305C303030525C303030695C303030655C3030306D5C303030615C3030306E5C3030306E5C303030735C303030635C303030685C303030655C3030305C3034305C303030535C303030755C3030306D5C3030306D5C30303065} +\BKM@entry{id=158,dest={73756273656374696F6E2A2E333136},srcline={1965}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030525C303030695C303030655C3030306D5C303030615C3030306E5C3030306E5C303030735C303030635C303030685C303030655C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C3034305C3030305C3035305C303030525C3030302D5C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C303531} +\BKM@entry{id=159,dest={73756273756273656374696F6E2A2E333138},srcline={1988}}{5C3337365C3337375C303030535C3030305C3334345C303030745C3030307A5C30303065} +\BKM@entry{id=160,dest={73756273656374696F6E2A2E333230},srcline={1997}}{5C3337365C3337375C303030535C303030755C303030625C303030735C303030745C303030695C303030745C303030755C303030745C303030695C3030306F5C3030306E5C303030735C303030725C303030655C303030675C303030655C3030306C} +\BKM@entry{id=161,dest={73756273656374696F6E2A2E333232},srcline={2006}}{5C3337365C3337375C303030505C303030615C303030725C303030745C303030695C303030655C3030306C5C3030306C5C303030655C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=162,dest={73756273756273656374696F6E2A2E333234},srcline={2014}}{5C3337365C3337375C303030425C303030655C303030695C3030305C3034305C303030705C303030655C303030725C303030695C3030306F5C303030645C303030695C303030735C303030635C303030685C303030655C3030306E5C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=163,dest={73756273656374696F6E2A2E333236},srcline={2019}}{5C3337365C3337375C303030485C303030615C303030755C303030705C303030745C303030735C303030615C303030745C3030307A5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C3030302D5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C30303067} +\BKM@entry{id=164,dest={73756273756273656374696F6E2A2E333238},srcline={2029}}{5C3337365C3337375C303030415C3030306E5C303030775C303030655C3030306E5C303030645C303030755C3030306E5C303030675C3030303A5C3030305C3034305C303030505C303030615C303030725C303030615C3030306D5C303030655C303030745C303030655C303030725C303030695C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\BKM@entry{id=165,dest={73756273656374696F6E2A2E333330},srcline={2036}}{5C3337365C3337375C303030555C3030306E5C303030655C303030695C303030675C303030655C3030306E5C303030745C3030306C5C303030695C303030635C303030685C303030655C303030735C3030305C3034305C303030525C303030695C303030655C3030306D5C303030615C3030306E5C3030306E5C3030302D5C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\BKM@entry{id=166,dest={73756273756273656374696F6E2A2E333332},srcline={2044}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030525C303030655C303030695C303030685C303030655C3030306E5C3030306B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A} +\@writefile{toc}{\contentsline {section}{\nonumberline Integralrechnung auf $\mathbb {R}$}{8}{section*.290}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Stammfunktionen (SF)}{8}{subsection*.292}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Integrationskonstante}{8}{subsubsection*.294}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Das Integral}{8}{subsubsection*.296}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Eigenschaften vom Integral (und R-Integral)}{8}{subsection*.298}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Linearität}{8}{subsubsection*.300}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Monotonie}{8}{subsubsection*.302}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Gebietsadditivität}{8}{subsubsection*.304}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Standardabschätzung}{8}{subsubsection*.306}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Korollar bezüglich glm. Konveregenz}{8}{subsubsection*.308}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Treppenfunktionen}{8}{subsection*.310}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Lemma}{8}{subsubsection*.312}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Die Riemannsche Summe}{8}{subsection*.314}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Das Riemannsche Integral (R-Integral)}{8}{subsection*.316}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Sätze}{8}{subsubsection*.318}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Substitutionsregel}{8}{subsection*.320}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Partielle Integration}{8}{subsection*.322}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Bei periodischen Funktion}{8}{subsubsection*.324}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Hauptsatz der Differential- und Integralrechnung}{8}{subsection*.326}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Anwendung: Parameterintegral}{8}{subsubsection*.328}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Uneigentliches Riemann-Integral}{8}{subsection*.330}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Reihenkonvergenz}{8}{subsubsection*.332}\protected@file@percent } +\BKM@entry{id=167,dest={73656374696F6E2A2E333334},srcline={2055}}{5C3337365C3337375C303030475C303030655C303030775C3030305C3336365C303030685C3030306E5C3030306C5C303030695C303030635C303030685C303030655C3030305C3034305C3030306C5C303030695C3030306E5C303030655C303030615C303030725C303030655C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030675C3030306C5C303030655C303030695C303030635C303030685C303030755C3030306E5C303030675C303030655C3030306E5C3030305C3034305C3030305C3035305C303030475C303030445C303030475C3030305C303531} +\BKM@entry{id=168,dest={73756273656374696F6E2A2E333336},srcline={2058}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030675C3030306C5C303030655C303030695C303030635C303030685C303030755C3030306E5C303030675C303030655C3030306E5C3030305C3034305C303030315C303030745C303030655C303030725C3030305C3034305C3030304F5C303030725C303030645C3030306E5C303030755C3030306E5C30303067} +\BKM@entry{id=169,dest={73756273756273656374696F6E2A2E333338},srcline={2060}}{5C3337365C3337375C303030485C3030306F5C3030306D5C3030306F5C303030675C303030655C3030306E5C303030655C3030305C3034305C3030304C5C3030305C3336365C303030735C303030755C3030306E5C30303067} +\BKM@entry{id=170,dest={73756273756273656374696F6E2A2E333430},srcline={2096}}{5C3337365C3337375C303030495C3030306E5C303030685C3030306F5C3030306D5C3030306F5C303030675C303030655C3030306E5C303030655C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030675C3030306C5C303030655C303030695C303030635C303030685C303030755C3030306E5C303030675C303030655C3030306E5C3030305C3034305C303030315C303030745C303030655C303030725C3030305C3034305C3030304F5C303030725C303030645C3030306E5C303030755C3030306E5C30303067} +\BKM@entry{id=171,dest={73756273656374696F6E2A2E333432},srcline={2139}}{5C3337365C3337375C303030485C3030306F5C3030306D5C3030306F5C303030675C303030655C3030306E5C303030655C3030305C3034305C303030535C303030795C303030735C303030745C303030655C3030306D5C303030655C3030305C3034305C3030306C5C303030695C3030306E5C303030655C303030615C303030725C303030655C303030725C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030675C3030306C5C303030655C303030695C303030635C303030685C303030755C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=172,dest={73756273756273656374696F6E2A2E333434},srcline={2149}}{5C3337365C3337375C303030455C303030785C303030695C303030735C303030745C303030655C3030306E5C3030307A5C3030302D5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030455C303030695C3030306E5C303030645C303030655C303030755C303030745C303030695C303030675C3030306B5C303030655C303030695C303030745C303030735C303030735C303030615C303030745C3030307A} +\BKM@entry{id=173,dest={73756273756273656374696F6E2A2E333436},srcline={2160}}{5C3337365C3337375C303030445C303030695C303030655C3030305C3034305C303030465C303030755C3030306E5C303030645C303030615C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C3030306C5C3030305C3336365C303030735C303030755C3030306E5C30303067} +\BKM@entry{id=174,dest={73756273756273656374696F6E2A2E333438},srcline={2177}}{5C3337365C3337375C303030445C303030695C303030655C3030305C3034305C303030465C303030755C3030306E5C303030645C303030615C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C3030306C5C3030305C3336365C303030735C303030755C3030306E5C303030675C3030305C3034305C303030655C303030695C3030306E5C303030655C303030725C3030305C3034305C303030645C303030695C303030615C303030675C3030306F5C3030306E5C303030615C3030306C5C303030695C303030735C303030695C303030655C303030725C303030625C303030615C303030725C303030655C3030306E5C3030305C3034305C3030304D5C303030615C303030745C303030725C303030695C30303078} +\BKM@entry{id=175,dest={73756273656374696F6E2A2E333530},srcline={2212}}{5C3337365C3337375C303030525C303030655C303030645C303030755C3030306B5C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030304F5C303030725C303030645C3030306E5C303030755C3030306E5C30303067} +\BKM@entry{id=176,dest={73756273656374696F6E2A2E333532},srcline={2236}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030455C303030785C303030705C3030306F5C3030306E5C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030615C3030306E5C303030735C303030615C303030745C3030307A} +\BKM@entry{id=177,dest={73756273756273656374696F6E2A2E333534},srcline={2253}}{5C3337365C3337375C303030425C303030655C3030307A5C303030695C303030655C303030685C303030755C3030306E5C303030675C3030305C3034305C3030307A5C303030755C3030306D5C3030305C3034305C303030635C303030685C303030615C303030725C303030615C3030306B5C303030745C303030655C303030725C303030695C303030735C303030745C303030695C303030735C303030635C303030685C303030655C3030306E5C3030305C3034305C303030505C3030306F5C3030306C5C303030795C3030306E5C3030306F5C3030306D5C303030655C3030306E5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030304D5C303030615C303030745C303030725C303030695C303030785C3030305C3034305C30303041} +\BKM@entry{id=178,dest={73756273656374696F6E2A2E333536},srcline={2262}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C3030304C5C3030305C3336365C303030735C303030755C3030306E5C303030675C303030735C303030725C303030615C303030755C3030306D} +\BKM@entry{id=179,dest={73756273756273656374696F6E2A2E333538},srcline={2280}}{5C3337365C3337375C3030304B5C3030306F5C303030725C3030306F5C3030306C5C3030306C5C303030615C30303072} +\BKM@entry{id=180,dest={73756273656374696F6E2A2E333630},srcline={2293}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030445C303030655C303030725C3030305C3034305C303030465C303030755C3030306E5C303030645C303030615C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C303030735C303030615C303030745C3030307A5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030415C3030306C5C303030675C303030655C303030625C303030725C30303061} +\BKM@entry{id=181,dest={73756273656374696F6E2A2E333632},srcline={2304}}{5C3337365C3337375C303030415C303030625C3030306C5C303030655C303030695C303030745C303030755C3030306E5C303030675C303030735C3030306F5C303030705C303030655C303030725C303030615C303030745C3030306F5C303030725C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030495C303030645C303030655C3030306E5C303030745C303030695C303030745C3030305C3334345C303030745C303030735C3030306F5C303030705C303030655C303030725C303030615C303030745C3030306F5C30303072} +\@writefile{toc}{\contentsline {section}{\nonumberline Gewöhnliche lineare Differentialgleichungen (GDG)}{9}{section*.334}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Differentialgleichungen 1ter Ordnung}{9}{subsection*.336}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Homogene Lösung}{9}{subsubsection*.338}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Inhomogene Differentialgleichungen 1ter Ordnung}{9}{subsubsection*.340}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Homogene Systeme linearer Differentialgleichungen}{9}{subsection*.342}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Existenz- und Eindeutigkeitssatz}{9}{subsubsection*.344}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Die Fundamentallösung}{9}{subsubsection*.346}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Die Fundamentallösung einer diagonalisierbaren Matrix}{9}{subsubsection*.348}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Reduktion der Ordnung}{9}{subsection*.350}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Exponentialansatz}{9}{subsection*.352}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Beziehung zum charakteristischen Polynomen der Matrix $A$}{9}{subsubsection*.354}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Lösungsraum}{9}{subsection*.356}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Korollar}{9}{subsubsection*.358}\protected@file@percent } +\BKM@entry{id=182,dest={73756273756273656374696F6E2A2E333634},srcline={2320}}{5C3337365C3337375C303030425C303030655C303030695C303030735C303030705C303030695C303030655C3030306C} +\BKM@entry{id=183,dest={73756273656374696F6E2A2E333636},srcline={2327}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030485C303030615C303030755C303030705C303030745C303030735C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306D5C3030305C3034305C3030304B5C303030615C303030705C303030695C303030745C303030655C3030306C} +\BKM@entry{id=184,dest={73756273656374696F6E2A2E333638},srcline={2354}}{5C3337365C3337375C303030495C3030306E5C303030685C3030306F5C3030306D5C3030306F5C303030675C303030655C3030306E5C303030655C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030675C3030306C5C303030655C303030695C303030635C303030685C303030755C3030306E5C303030675C303030655C3030306E5C3030305C3034305C303030685C3030305C3336365C303030685C303030655C303030725C303030655C303030725C3030305C3034305C3030304F5C303030725C303030645C3030306E5C303030755C3030306E5C30303067} +\BKM@entry{id=185,dest={73756273756273656374696F6E2A2E333730},srcline={2372}}{5C3337365C3337375C303030415C3030306C5C3030306C5C303030675C303030655C3030306D5C303030655C303030695C3030306E5C303030655C303030735C3030305C3034305C303030565C3030306F5C303030725C303030675C303030655C303030685C303030655C3030306E5C3030305C3034305C3030307A5C303030755C303030725C3030305C3034305C303030425C303030655C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C303030675C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030705C303030615C303030725C303030745C303030695C3030306B5C303030755C3030306C5C3030305C3334345C303030725C303030655C3030306E5C3030305C3034305C3030304C5C3030305C3336365C303030735C303030755C3030306E5C30303067} +\BKM@entry{id=186,dest={73756273656374696F6E2A2E333732},srcline={2399}}{5C3337365C3337375C3030304B5C3030306F5C303030635C303030685C303030725C303030655C3030307A5C303030655C303030705C303030745C3030303A5C3030305C3034305C303030565C3030306F5C303030725C303030675C303030655C303030685C303030655C3030306E5C3030305C3034305C303030625C303030655C303030695C3030305C3034305C303030445C303030475C3030304C5C30303073} +\BKM@entry{id=187,dest={73756273656374696F6E2A2E333734},srcline={2412}}{5C3337365C3337375C303030535C3030306F5C3030306E5C303030735C303030745C303030695C303030675C303030655C30303073} +\BKM@entry{id=188,dest={73756273756273656374696F6E2A2E333736},srcline={2414}}{5C3337365C3337375C303030485C303030615C303030725C3030306D5C3030306F5C3030306E5C303030695C303030735C303030635C303030685C303030655C3030305C3034305C3030304F5C303030735C3030307A5C303030695C3030306C5C3030306C5C303030615C303030745C3030306F5C303030725C303030655C3030306E} +\BKM@entry{id=189,dest={73756273756273656374696F6E2A2E333738},srcline={2431}}{5C3337365C3337375C303030455C303030725C3030307A5C303030775C303030755C3030306E5C303030675C303030655C3030306E5C303030655C3030305C3034305C303030535C303030635C303030685C303030775C303030695C3030306E5C303030675C303030755C3030306E5C303030675C303030655C3030306E} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Einschub: Der Fundamentalsatz der Algebra}{10}{subsection*.360}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Ableitungsoperator und Identitätsoperator}{10}{subsection*.362}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Beispiel}{10}{subsubsection*.364}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Hauptsatz vom Kapitel}{10}{subsection*.366}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Inhomogene Differentialgleichungen höherer Ordnung}{10}{subsection*.368}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Allgemeines Vorgehen zur Berechnung der partikulären Lösung}{10}{subsubsection*.370}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Kochrezept: Vorgehen bei DGLs}{10}{subsection*.372}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Sonstiges}{10}{subsection*.374}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Harmonische Oszillatoren}{10}{subsubsection*.376}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Erzwungene Schwingungen}{10}{subsubsection*.378}\protected@file@percent } +\BKM@entry{id=190,dest={73656374696F6E2A2E333830},srcline={2466}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C303030675C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C3030306E} +\BKM@entry{id=191,dest={73756273656374696F6E2A2E333832},srcline={2468}}{5C3337365C3337375C303030505C303030615C303030725C303030745C303030695C303030655C3030306C5C3030306C5C303030655C3030305C3034305C303030415C303030625C3030306C5C303030655C303030695C303030745C303030755C3030306E5C30303067} +\BKM@entry{id=192,dest={73756273756273656374696F6E2A2E333834},srcline={2481}}{5C3337365C3337375C303030545C303030615C3030306E5C303030675C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030655C303030625C303030655C3030306E5C30303065} +\BKM@entry{id=193,dest={73756273656374696F6E2A2E333836},srcline={2491}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C} +\BKM@entry{id=194,dest={73756273756273656374696F6E2A2E333838},srcline={2511}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C3030304B5C303030725C303030695C303030745C303030655C303030725C303030695C303030755C3030306D5C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C303030435C30303031} +\BKM@entry{id=195,dest={73756273756273656374696F6E2A2E333930},srcline={2523}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=196,dest={73756273656374696F6E2A2E333932},srcline={2530}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C303030745C303030695C3030306F5C3030306E5C303030735C303030725C303030655C303030675C303030655C3030306C5C3030306E} +\BKM@entry{id=197,dest={73756273756273656374696F6E2A2E333934},srcline={2546}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C3030304B5C303030655C303030745C303030745C303030655C3030306E5C303030725C303030655C303030675C303030655C3030306C5C3030305C3034305C303030315C3030302E5C3030305C3034305C303030565C303030655C303030725C303030735C303030695C3030306F5C3030306E} +\BKM@entry{id=198,dest={73756273756273656374696F6E2A2E333936},srcline={2564}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C3030304B5C303030655C303030745C303030745C303030655C3030306E5C303030725C303030655C303030675C303030655C3030306C5C3030305C3034305C303030325C3030302E5C3030305C3034305C303030565C303030655C303030725C303030735C303030695C3030306F5C3030306E} +\BKM@entry{id=199,dest={73756273656374696F6E2A2E333938},srcline={2582}}{5C3337365C3337375C303030525C303030695C303030635C303030685C303030745C303030755C3030306E5C303030675C303030735C303030615C303030625C3030306C5C303030655C303030695C303030745C303030755C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=200,dest={73756273756273656374696F6E2A2E343030},srcline={2590}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=201,dest={73756273656374696F6E2A2E343032},srcline={2595}}{5C3337365C3337375C303030565C303030655C3030306B5C303030745C3030306F5C303030725C303030665C303030655C3030306C5C303030645C303030655C30303072} +\BKM@entry{id=202,dest={73756273756273656374696F6E2A2E343034},srcline={2600}}{5C3337365C3337375C303030475C303030725C303030615C303030645C303030695C303030655C3030306E5C303030745C303030655C3030306E5C303030665C303030655C3030306C5C30303064} +\BKM@entry{id=203,dest={73756273656374696F6E2A2E343036},srcline={2619}}{5C3337365C3337375C303030485C3030305C3336365C303030685C303030655C303030725C303030655C3030305C3034305C303030415C303030625C3030306C5C303030655C303030695C303030745C303030755C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=204,dest={73756273756273656374696F6E2A2E343038},srcline={2629}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030485C303030655C303030725C3030306D5C303030615C3030306E5C3030306E5C3030305C3034305C303030535C303030635C303030685C303030775C303030615C303030725C3030307A} +\BKM@entry{id=205,dest={73756273656374696F6E2A2E343130},srcline={2638}}{5C3337365C3337375C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030304B5C3030306C5C303030615C303030735C303030735C303030655C3030305C3034305C303030435C3030306D} +\BKM@entry{id=206,dest={73756273756273656374696F6E2A2E343132},srcline={2646}}{5C3337365C3337375C3030304E5C3030306F5C303030745C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030305C3035305C3030304D5C303030755C3030306C5C303030745C303030695C3030302D5C303030495C3030306E5C303030645C303030655C303030785C3030305C3034305C303030535C303030635C303030685C303030725C303030655C303030695C303030625C303030775C303030655C303030695C303030735C303030655C3030305C303531} +\BKM@entry{id=207,dest={73756273656374696F6E2A2E343134},srcline={2661}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030545C303030615C303030795C3030306C5C3030306F5C30303072} +\BKM@entry{id=208,dest={73756273756273656374696F6E2A2E343136},srcline={2671}}{5C3337365C3337375C303030545C303030615C303030795C3030306C5C3030306F5C303030725C303030655C3030306E5C303030745C303030775C303030695C303030635C3030306B5C3030306C5C303030755C3030306E5C303030675C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C3030306E5C3030305C3034305C3030303D5C3030305C3034305C303030325C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C3030306D5C3030305C3034305C3030303D5C3030305C3034305C30303032} +\BKM@entry{id=209,dest={73756273756273656374696F6E2A2E343138},srcline={2682}}{5C3337365C3337375C3030304B5C3030306F5C303030725C3030306F5C3030306C5C3030306C5C303030615C30303072} +\@writefile{toc}{\contentsline {section}{\nonumberline Differentialrechnung in $\mathbb {R}^n$}{11}{section*.380}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Partielle Ableitung}{11}{subsection*.382}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Tangentialebene}{11}{subsubsection*.384}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Differential}{11}{subsection*.386}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Kriterium für $C^1$}{11}{subsubsection*.388}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{11}{subsubsection*.390}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Differentiationsregeln}{11}{subsection*.392}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Kettenregel 1. Version}{11}{subsubsection*.394}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Kettenregel 2. Version}{11}{subsubsection*.396}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Richtungsableitungen}{11}{subsection*.398}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{11}{subsubsection*.400}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Vektorfelder}{11}{subsection*.402}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Gradientenfeld}{11}{subsubsection*.404}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Höhere Ableitungen}{11}{subsection*.406}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz von Hermann Schwarz}{11}{subsubsection*.408}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Funktionen der Klasse $C^m$}{11}{subsection*.410}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Notation (Multi-Index Schreibweise)}{11}{subsubsection*.412}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Satz von Taylor}{11}{subsection*.414}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Taylorentwicklung für $n = 2$ und $m = 2$}{11}{subsubsection*.416}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Korollar}{11}{subsubsection*.418}\protected@file@percent } +\BKM@entry{id=210,dest={73756273656374696F6E2A2E343230},srcline={2693}}{5C3337365C3337375C303030485C303030655C303030735C303030735C303030655C3030302D5C3030304D5C303030615C303030745C303030725C303030695C30303078} +\BKM@entry{id=211,dest={73756273756273656374696F6E2A2E343232},srcline={2707}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030685C303030655C303030695C303030745C3030305C3034305C303030655C303030695C3030306E5C303030655C303030725C3030305C3034305C3030304D5C303030615C303030745C303030725C303030695C30303078} +\BKM@entry{id=212,dest={73756273756273656374696F6E2A2E343234},srcline={2715}}{5C3337365C3337375C3030304B5C303030725C303030695C303030745C303030695C303030735C303030635C303030685C303030655C303030725C3030305C3034305C303030505C303030755C3030306E5C3030306B5C30303074} +\BKM@entry{id=213,dest={73756273756273656374696F6E2A2E343236},srcline={2719}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=214,dest={73756273656374696F6E2A2E343238},srcline={2735}}{5C3337365C3337375C303030565C303030655C3030306B5C303030745C3030306F5C303030725C303030775C303030655C303030725C303030745C303030695C303030675C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=215,dest={73756273756273656374696F6E2A2E343330},srcline={2751}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C303030745C303030695C3030306F5C3030306E5C303030735C303030725C303030655C303030675C303030655C3030306C5C3030306E} +\BKM@entry{id=216,dest={73756273756273656374696F6E2A2E343332},srcline={2763}}{5C3337365C3337375C3030304B5C303030655C303030745C303030745C303030655C3030306E5C303030725C303030655C303030675C303030655C3030306C5C3030305C3034305C303030335C303030745C303030655C3030305C3034305C303030565C303030655C303030725C303030735C303030695C3030306F5C3030306E} +\BKM@entry{id=217,dest={73756273656374696F6E2A2E343334},srcline={2774}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030555C3030306D5C3030306B5C303030655C303030685C303030725C303030735C303030615C303030745C3030307A} +\BKM@entry{id=218,dest={73756273756273656374696F6E2A2E343336},srcline={2792}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C3030306F5C3030306D5C3030306F5C303030725C303030705C303030685C303030695C303030735C3030306D5C303030755C30303073} +\BKM@entry{id=219,dest={73756273756273656374696F6E2A2E343338},srcline={2799}}{5C3337365C3337375C303030415C3030306E5C303030775C303030655C3030306E5C303030645C303030755C3030306E5C303030675C3030303A5C3030305C3034305C303030505C3030306F5C3030306C5C303030615C303030725C3030306B5C3030306F5C3030306F5C303030725C303030645C303030695C3030306E5C303030615C3030306E5C303030745C303030655C3030306E} +\BKM@entry{id=220,dest={73756273656374696F6E2A2E343430},srcline={2828}}{5C3337365C3337375C303030495C3030306D5C303030705C3030306C5C303030695C3030307A5C303030695C303030745C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=221,dest={73756273756273656374696F6E2A2E343432},srcline={2832}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=222,dest={73756273656374696F6E2A2E343434},srcline={2859}}{5C3337365C3337375C303030455C303030785C303030745C303030725C303030655C3030306D5C303030615C3030305C3034305C3030306D5C303030695C303030745C3030305C3034305C3030304E5C303030655C303030625C303030655C3030306E5C303030625C303030655C303030645C303030695C3030306E5C303030675C303030755C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=223,dest={73756273756273656374696F6E2A2E343436},srcline={2861}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C3030304C5C303030615C303030675C303030725C303030615C3030306E5C303030675C303030655C3030302D5C3030304D5C303030755C3030306C5C303030745C303030695C303030705C3030306C5C303030695C3030306B5C303030615C303030745C3030306F5C303030725C303030655C3030306E5C303030725C303030655C303030675C303030655C3030306C} +\BKM@entry{id=224,dest={73756273756273656374696F6E2A2E343438},srcline={2877}}{5C3337365C3337375C3030304E5C303030655C303030625C303030655C3030306E5C303030625C303030655C303030645C303030695C3030306E5C303030675C303030755C3030306E5C303030675C303030655C3030306E5C3030303A5C3030305C3034305C303030455C303030695C3030306E5C303030665C303030615C303030635C303030685C303030655C3030305C3034305C303030525C303030615C3030306E5C303030645C3030306D5C303030655C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=225,dest={73756273656374696F6E2A2E343530},srcline={2881}}{5C3337365C3337375C303030565C3030306F5C303030725C303030675C303030655C303030685C303030655C3030306E5C3030303A5C3030305C3034305C303030475C3030306C5C3030306F5C303030625C303030615C3030306C5C303030655C3030305C3034305C303030455C303030785C303030745C303030725C303030655C3030306D5C303030655C303030775C303030655C303030725C303030745C303030655C3030305C3034305C303030625C303030655C303030735C303030745C303030695C3030306D5C3030306D5C303030655C3030306E} +\BKM@entry{id=226,dest={73756273756273656374696F6E2A2E343532},srcline={2896}}{5C3337365C3337375C303030415C3030306C5C303030745C303030655C303030725C3030306E5C303030615C303030745C303030695C303030765C303030655C303030735C3030305C3034305C303030565C3030306F5C303030725C303030675C303030655C303030685C303030655C3030306E5C3030305C3034305C303030665C3030305C3337345C303030725C3030305C3034305C303030645C303030615C303030735C3030305C3034305C303030425C303030655C303030735C303030745C303030695C3030306D5C3030306D5C303030655C3030306E5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030304B5C303030615C3030306E5C303030645C303030695C303030645C303030615C303030745C303030655C3030306E5C3030305C3034305C303030615C303030755C303030665C3030305C3034305C303030645C303030655C3030306D5C3030305C3034305C303030525C303030615C3030306E5C30303064} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Hesse-Matrix}{12}{subsection*.420}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Einschub: Definitheit einer Matrix}{12}{subsubsection*.422}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Kritischer Punkt}{12}{subsubsection*.424}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{12}{subsubsection*.426}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Vektorwertige Funktionen}{12}{subsection*.428}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Differentiationsregeln}{12}{subsubsection*.430}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Kettenregel 3te Version}{12}{subsubsection*.432}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Umkehrsatz}{12}{subsection*.434}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Diffeomorphismus}{12}{subsubsection*.436}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Anwendung: Polarkoordinanten}{12}{subsubsection*.438}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Implizite Funktionen}{12}{subsection*.440}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{12}{subsubsection*.442}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Extrema mit Nebenbedingungen}{12}{subsection*.444}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Lagrange-Multiplikatorenregel}{12}{subsubsection*.446}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Nebenbedingungen: Einfache Randmengen}{12}{subsubsection*.448}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Vorgehen: Globale Extremewerte bestimmen}{12}{subsection*.450}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Alternatives Vorgehen für das Bestimmen der Kandidaten auf dem Rand}{12}{subsubsection*.452}\protected@file@percent } +\BKM@entry{id=227,dest={73656374696F6E2A2E343534},srcline={2910}}{5C3337365C3337375C303030575C303030655C303030675C303030695C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C30303065} +\BKM@entry{id=228,dest={73756273656374696F6E2A2E343536},srcline={2912}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030665C3030306F5C303030725C3030306D5C3030305C3034305C3030305C3035305C303030315C3030302D5C303030465C3030306F5C303030725C3030306D5C3030305C303531} +\BKM@entry{id=229,dest={73756273656374696F6E2A2E343538},srcline={2927}}{5C3337365C3337375C303030575C303030655C303030675C303030695C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\BKM@entry{id=230,dest={73756273756273656374696F6E2A2E343630},srcline={2951}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030575C303030655C303030675C303030695C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\BKM@entry{id=231,dest={73756273756273656374696F6E2A2E343632},srcline={2962}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030575C303030655C303030675C3030307A5C303030755C303030735C303030615C3030306D5C3030306D5C303030655C3030306E5C303030685C3030305C3334345C3030306E5C303030675C303030655C3030306E5C30303064} +\BKM@entry{id=232,dest={73756273756273656374696F6E2A2E343634},srcline={2967}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=233,dest={73756273756273656374696F6E2A2E343636},srcline={2975}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030505C303030615C303030725C303030615C3030306D5C303030655C303030745C303030725C303030695C303030735C303030695C303030655C303030725C303030755C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=234,dest={73756273656374696F6E2A2E343638},srcline={2987}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C303030745C303030695C303030615C3030306C5C30303065} +\BKM@entry{id=235,dest={73756273756273656374696F6E2A2E343730},srcline={3008}}{5C3337365C3337375C303030565C303030655C303030725C303030665C303030615C303030685C303030725C303030655C3030306E5C3030305C3034305C3030307A5C303030755C303030725C3030305C3034305C303030425C303030655C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C303030675C3030305C3034305C303030655C303030695C3030306E5C303030655C303030735C3030305C3034305C303030505C3030306F5C303030745C303030655C3030306E5C303030745C303030695C303030615C3030306C5C30303073} +\BKM@entry{id=236,dest={73756273756273656374696F6E2A2E343732},srcline={3047}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030505C3030306F5C303030745C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030665C303030655C3030306C5C30303064} +\BKM@entry{id=237,dest={73756273756273656374696F6E2A2E343734},srcline={3058}}{5C3337365C3337375C3030304B5C3030306F5C303030725C3030306F5C3030306C5C3030306C5C303030615C303030725C3030303A5C3030305C3034305C303030525C3030306F5C303030745C303030615C303030745C303030695C3030306F5C3030306E5C303030735C303030765C303030655C3030306B5C303030745C3030306F5C303030725C303030665C303030655C3030306C5C30303064} +\BKM@entry{id=238,dest={73656374696F6E2A2E343736},srcline={3069}}{5C3337365C3337375C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C3030306E} +\BKM@entry{id=239,dest={73756273656374696F6E2A2E343738},srcline={3072}}{5C3337365C3337375C303030525C303030695C303030655C3030306D5C303030615C3030306E5C3030306E5C303030735C303030635C303030685C303030655C303030735C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C3034305C3030305C3337345C303030625C303030655C303030725C3030305C3034305C303030655C303030695C3030306E5C303030655C3030306E5C3030305C3034305C303030515C303030755C303030615C303030645C303030655C30303072} +\BKM@entry{id=240,dest={73756273756273656374696F6E2A2E343830},srcline={3107}}{5C3337365C3337375C303030545C303030725C303030655C303030705C303030705C303030655C3030306E5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C3030306E} +\BKM@entry{id=241,dest={73756273756273656374696F6E2A2E343832},srcline={3125}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030565C303030655C303030725C303030665C303030655C303030695C3030306E5C303030655C303030725C303030755C3030306E5C303030675C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030305A5C303030655C303030725C3030306C5C303030655C303030675C303030755C3030306E5C30303067} +\BKM@entry{id=242,dest={73756273656374696F6E2A2E343834},srcline={3132}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030525C303030695C303030655C3030306D5C303030615C3030306E5C3030306E5C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\@writefile{toc}{\contentsline {section}{\nonumberline Wegintegrale}{13}{section*.454}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Differentialform (1-Form)}{13}{subsection*.456}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Wegintegral}{13}{subsection*.458}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Das Wegintegral}{13}{subsubsection*.460}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Einschub: Wegzusammenhängend}{13}{subsubsection*.462}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{13}{subsubsection*.464}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Einschub: Parametrisierungen}{13}{subsubsection*.466}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Potentiale}{13}{subsection*.468}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Verfahren zur Berechnung eines Potentials}{13}{subsubsection*.470}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Potentialfeld}{13}{subsubsection*.472}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Korollar: Rotationsvektorfeld}{13}{subsubsection*.474}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\nonumberline Integration in $\mathbb {R}^n$}{13}{section*.476}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Riemannsches Integral über einen Quader}{13}{subsection*.478}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Treppenfunktion in $\mathbb {R}^n$}{13}{subsubsection*.480}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Verfeinerung der Zerlegung}{13}{subsubsection*.482}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Das Riemann Integral}{13}{subsection*.484}\protected@file@percent } +\BKM@entry{id=243,dest={73756273756273656374696F6E2A2E343836},srcline={3151}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=244,dest={73756273756273656374696F6E2A2E343838},srcline={3155}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030525C303030695C303030655C3030306D5C303030615C3030306E5C3030306E5C303030735C303030635C303030685C303030655C3030305C3034305C303030535C303030755C3030306D5C3030306D5C303030655C3030306E} +\BKM@entry{id=245,dest={73756273656374696F6E2A2E343930},srcline={3164}}{5C3337365C3337375C303030455C303030695C303030675C303030655C3030306E5C303030735C303030635C303030685C303030615C303030665C303030745C303030655C3030306E5C3030305C3034305C303030645C303030655C303030735C3030305C3034305C303030525C303030695C303030655C3030306D5C303030615C3030306E5C3030306E5C303030735C303030635C303030685C303030655C3030306E5C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C30303073} +\BKM@entry{id=246,dest={73756273756273656374696F6E2A2E343932},srcline={3166}}{5C3337365C3337375C3030304C5C303030695C3030306E5C303030655C303030615C303030725C303030695C303030745C3030305C3334345C30303074} +\BKM@entry{id=247,dest={73756273756273656374696F6E2A2E343934},srcline={3174}}{5C3337365C3337375C3030304D5C3030306F5C3030306E5C3030306F5C303030745C3030306F5C3030306E5C303030695C30303065} +\BKM@entry{id=248,dest={73756273756273656374696F6E2A2E343936},srcline={3188}}{5C3337365C3337375C3030304B5C3030306F5C303030725C3030306F5C3030306C5C3030306C5C303030615C30303072} +\BKM@entry{id=249,dest={73756273756273656374696F6E2A2E343938},srcline={3196}}{5C3337365C3337375C303030475C303030655C303030625C303030695C303030655C303030745C303030735C303030615C303030645C303030645C303030695C303030745C303030695C303030765C303030695C303030745C3030305C3334345C30303074} +\BKM@entry{id=250,dest={73756273656374696F6E2A2E353030},srcline={3206}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030465C303030755C303030625C303030695C3030306E5C30303069} +\BKM@entry{id=251,dest={73756273656374696F6E2A2E353032},srcline={3219}}{5C3337365C3337375C3030304A5C3030306F5C303030725C303030645C303030615C3030306E5C3030302D5C303030425C303030655C303030725C303030655C303030695C303030635C303030685C30303065} +\BKM@entry{id=252,dest={73756273756273656374696F6E2A2E353034},srcline={3240}}{5C3337365C3337375C3030304A5C3030306F5C303030725C303030645C303030615C3030306E5C3030302D5C3030306D5C303030655C303030735C303030735C303030625C303030615C303030725C3030305C3034305C3030305C3035305C3030304A5C3030304D5C3030305C303531} +\BKM@entry{id=253,dest={73756273756273656374696F6E2A2E353036},srcline={3246}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=254,dest={73756273756273656374696F6E2A2E353038},srcline={3254}}{5C3337365C3337375C303030525C3030302D5C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C3034305C3030305C3337345C303030625C303030655C303030725C3030305C3034305C3030304A5C3030306F5C303030725C303030645C303030615C3030306E5C3030302D5C3030306D5C303030655C303030735C303030735C303030625C303030615C303030725C303030655C3030305C3034305C303030425C303030655C303030725C303030655C303030695C303030635C303030685C30303065} +\BKM@entry{id=255,dest={73756273756273656374696F6E2A2E353130},srcline={3264}}{5C3337365C3337375C303030535C303030615C303030745C3030307A} +\BKM@entry{id=256,dest={73756273656374696F6E2A2E353132},srcline={3269}}{5C3337365C3337375C303030485C303030795C303030705C3030306F5C303030675C303030725C303030615C303030705C303030685C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030485C303030795C303030705C303030655C303030725C303030675C303030725C303030615C303030705C30303068} +\BKM@entry{id=257,dest={73756273656374696F6E2A2E353134},srcline={3302}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030475C303030725C303030655C303030655C3030306E} +\BKM@entry{id=258,dest={73756273756273656374696F6E2A2E353136},srcline={3312}}{5C3337365C3337375C303030475C303030655C303030625C303030695C303030655C303030745C3030305C3034305C303030645C303030655C303030725C3030305C3034305C3030304B5C3030306C5C303030615C303030735C303030735C303030655C3030305C3034305C303030435C303030315C303030735C303030745C303030775C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C30303032} +\BKM@entry{id=259,dest={73756273756273656374696F6E2A2E353138},srcline={3342}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030475C303030725C303030655C303030655C3030306E5C3030305C3034305C3030306D5C303030695C303030745C3030305C3034305C303030565C303030655C3030306B5C303030745C3030306F5C303030725C303030665C303030655C3030306C5C30303064} +\BKM@entry{id=260,dest={73756273656374696F6E2A2E353230},srcline={3367}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030505C3030306F5C303030695C3030306E5C303030635C303030615C303030725C3030305C333531} +\BKM@entry{id=261,dest={73756273756273656374696F6E2A2E353232},srcline={3375}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030455C303030695C3030306E5C303030665C303030615C303030635C303030685C3030305C3034305C3030307A5C303030755C303030735C303030615C3030306D5C3030306D5C303030655C3030306E5C303030685C3030305C3334345C3030306E5C303030675C303030655C3030306E5C303030645C303030655C3030305C3034305C303030475C303030655C303030625C303030695C303030655C303030745C30303065} +\BKM@entry{id=262,dest={73756273656374696F6E2A2E353234},srcline={3384}}{5C3337365C3337375C303030535C303030755C303030625C303030735C303030745C303030695C303030745C303030755C303030745C303030695C3030306F5C3030306E5C303030735C303030725C303030655C303030675C303030655C3030306C} +\BKM@entry{id=263,dest={73756273756273656374696F6E2A2E353236},srcline={3386}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030445C303030695C303030665C303030665C303030655C3030306F5C3030306D5C3030306F5C303030725C303030705C303030685C303030695C303030735C3030306D5C303030755C30303073} +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{14}{subsubsection*.486}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Riemannsche Summen}{14}{subsubsection*.488}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Eigenschaften des Riemannschen Integrals}{14}{subsection*.490}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Linearität}{14}{subsubsection*.492}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Monotonie}{14}{subsubsection*.494}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Korollar}{14}{subsubsection*.496}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Gebietsadditivität}{14}{subsubsection*.498}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Satz von Fubini}{14}{subsection*.500}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Jordan-Bereiche}{14}{subsection*.502}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Jordan-messbar (JM)}{14}{subsubsection*.504}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{14}{subsubsection*.506}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline R-Integral über Jordan-messbare Bereiche}{14}{subsubsection*.508}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz}{14}{subsubsection*.510}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Hypograph und Hypergraph}{14}{subsection*.512}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Satz von Green}{14}{subsection*.514}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Gebiet der Klasse $C^1_{stw}$ in $\mathbb {R}^2$}{14}{subsubsection*.516}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz von Green mit Vektorfeld}{14}{subsubsection*.518}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Satz von Poincaré}{14}{subsection*.520}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Einschub: Einfach zusammenhängende Gebiete}{14}{subsubsection*.522}\protected@file@percent } +\BKM@entry{id=264,dest={73756273756273656374696F6E2A2E353238},srcline={3396}}{5C3337365C3337375C303030545C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C303030735C303030735C303030615C303030745C3030307A} +\BKM@entry{id=265,dest={73756273756273656374696F6E2A2E353330},srcline={3406}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030303A5C3030305C3034305C303030535C303030755C303030625C303030735C303030745C303030695C303030745C303030755C303030745C303030695C3030306F5C3030306E5C303030735C303030725C303030655C303030675C303030655C3030306C} +\BKM@entry{id=266,dest={73756273756273656374696F6E2A2E353332},srcline={3423}}{5C3337365C3337375C303030455C303030695C3030306E5C303030735C303030635C303030685C303030755C303030625C3030303A5C3030305C3034305C303030565C303030655C303030725C303030735C303030635C303030685C303030695C303030655C303030645C303030655C3030305C3034305C3030304B5C3030306F5C3030306F5C303030725C303030645C303030695C3030306E5C303030615C303030745C303030655C3030306E5C303030745C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=267,dest={73756273656374696F6E2A2E353334},srcline={3463}}{5C3337365C3337375C3030304F5C303030625C303030655C303030725C303030665C3030306C5C3030305C3334345C303030635C303030685C303030655C3030306E5C3030306D5C303030615C303030735C303030735C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030465C3030306C5C303030755C303030735C303030735C303030695C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\BKM@entry{id=268,dest={73756273756273656374696F6E2A2E353336},srcline={3466}}{5C3337365C3337375C3030304C5C3030306F5C3030306B5C303030615C3030306C5C303030655C3030305C3034305C303030495C3030306D5C3030306D5C303030655C303030725C303030735C303030695C3030306F5C3030306E} +\BKM@entry{id=269,dest={73756273756273656374696F6E2A2E353338},srcline={3480}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C3030304F5C303030625C303030655C303030725C303030665C3030306C5C3030305C3334345C303030635C303030685C303030655C3030306E5C303030695C3030306E5C303030685C303030615C3030306C5C30303074} +\BKM@entry{id=270,dest={73756273756273656374696F6E2A2E353430},srcline={3491}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C3034305C303030655C303030695C3030306E5C303030655C303030725C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030305C3337345C303030625C303030655C303030725C3030305C3034305C303030655C303030695C3030306E5C303030655C3030305C3034305C3030304F5C303030625C303030655C303030725C303030665C3030306C5C3030305C3334345C303030635C303030685C30303065} +\BKM@entry{id=271,dest={73756273756273656374696F6E2A2E353432},srcline={3500}}{5C3337365C3337375C3030304E5C3030306F5C303030725C3030306D5C303030615C3030306C5C303030655C3030306E5C303030765C303030655C3030306B5C303030745C3030306F5C30303072} +\BKM@entry{id=272,dest={73756273756273656374696F6E2A2E353434},srcline={3508}}{5C3337365C3337375C303030445C303030615C303030735C3030305C3034305C303030465C3030306C5C303030755C303030735C303030735C303030695C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C} +\BKM@entry{id=273,dest={73756273656374696F6E2A2E353436},srcline={3521}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030535C303030745C3030306F5C3030306B5C303030655C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C30303033} +\BKM@entry{id=274,dest={73756273756273656374696F6E2A2E353438},srcline={3524}}{5C3337365C3337375C303030445C303030695C303030655C3030305C3034305C303030525C3030306F5C303030745C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030655C303030695C3030306E5C303030655C303030735C3030305C3034305C303030525C303030335C3030305C3034305C303030565C303030655C3030306B5C303030745C3030306F5C303030725C303030665C303030655C3030306C5C30303064} +\BKM@entry{id=275,dest={73756273756273656374696F6E2A2E353530},srcline={3539}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030535C303030745C3030306F5C3030306B5C303030655C30303073} +\BKM@entry{id=276,dest={73756273656374696F6E2A2E353532},srcline={3558}}{5C3337365C3337375C303030445C303030655C303030725C3030305C3034305C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030475C303030615C303030755C303030735C30303073} +\BKM@entry{id=277,dest={73756273756273656374696F6E2A2E353534},srcline={3560}}{5C3337365C3337375C303030445C303030695C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A5C3030305C3034305C303030655C303030695C3030306E5C303030655C303030735C3030305C3034305C303030565C303030655C3030306B5C303030745C3030306F5C303030725C303030665C303030655C3030306C5C303030645C303030655C30303073} +\BKM@entry{id=278,dest={73756273756273656374696F6E2A2E353536},srcline={3568}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030475C303030615C303030755C303030735C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C30303032} +\BKM@entry{id=279,dest={73756273756273656374696F6E2A2E353538},srcline={3586}}{5C3337365C3337375C303030535C303030615C303030745C3030307A5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030475C303030615C303030755C303030735C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C303030525C30303033} +\BKM@entry{id=280,dest={73756273656374696F6E2A2E353630},srcline={3603}}{5C3337365C3337375C303030425C303030655C303030695C303030735C303030705C303030695C303030655C3030306C5C3030305C3034305C303030655C303030695C3030306E5C303030655C303030735C3030305C3034305C3030304F5C303030625C303030655C303030725C303030665C3030306C5C3030305C3334345C303030635C303030685C303030655C3030306E5C303030695C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C30303073} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Substitutionsregel}{15}{subsection*.524}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Einschub: Diffeomorphismus}{15}{subsubsection*.526}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Transformationssatz}{15}{subsubsection*.528}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz: Substitutionsregel}{15}{subsubsection*.530}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Einschub: Verschiede Koordinatentransformationen}{15}{subsubsection*.532}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Oberflächenmass und Flussintegral}{15}{subsection*.534}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Lokale Immersion}{15}{subsubsection*.536}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Der Oberflächeninhalt}{15}{subsubsection*.538}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Das Integral einer Funktion über eine Oberfläche}{15}{subsubsection*.540}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Normalenvektor}{15}{subsubsection*.542}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Das Flussintegral}{15}{subsubsection*.544}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Satz von Stokes in $\mathbb {R}^3$}{15}{subsection*.546}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Die Rotation eines $\mathbb {R}^3$ Vektorfeld}{15}{subsubsection*.548}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz von Stokes}{15}{subsubsection*.550}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Der Satz von Gauss}{15}{subsection*.552}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Divergenz eines Vektorfeldes}{15}{subsubsection*.554}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz von Gauss in $\mathbb {R}^2$}{15}{subsubsection*.556}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Satz von Gauss in $\mathbb {R}^3$}{15}{subsubsection*.558}\protected@file@percent } +\BKM@entry{id=281,dest={73756273656374696F6E2A2E353632},srcline={3649}}{5C3337365C3337375C303030505C303030755C3030306E5C3030306B5C303030745C3030306D5C303030655C3030306E5C303030675C303030655C3030306E} +\BKM@entry{id=282,dest={73756273756273656374696F6E2A2E353634},srcline={3665}}{5C3337365C3337375C303030565C3030306F5C3030306C5C303030755C3030306D5C303030655C3030306E5C3030305C3034305C303030655C303030695C3030306E5C303030655C303030735C3030305C3034305C303030455C3030306C5C3030306C5C303030695C303030705C303030735C3030306F5C303030695C30303064} +\BKM@entry{id=283,dest={73756273656374696F6E2A2E353636},srcline={3680}}{5C3337365C3337375C3030304B5C3030306F5C303030635C303030685C303030725C303030655C3030307A5C303030655C303030705C303030745C30303065} +\BKM@entry{id=284,dest={73756273756273656374696F6E2A2E353638},srcline={3683}}{5C3337365C3337375C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C303030675C303030725C303030655C3030306E5C3030307A5C303030655C3030306E5C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030655C303030695C3030306E5C303030655C3030306D5C3030305C3034305C303030485C303030795C303030705C303030655C303030725C3030302D5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030485C303030795C303030705C3030306F5C303030675C303030725C303030615C303030705C303030685C3030305C3034305C303030625C303030655C303030735C303030745C303030695C3030306D5C3030306D5C303030655C3030306E} +\BKM@entry{id=285,dest={73756273756273656374696F6E2A2E353730},srcline={3693}}{5C3337365C3337375C3030304B5C3030306F5C303030635C303030685C303030725C303030655C3030307A5C303030655C303030705C303030745C3030305C3034305C303030565C3030306F5C3030306C5C303030755C3030306D5C303030655C3030306E5C303030625C303030655C303030725C303030655C303030635C303030685C3030306E5C303030755C3030306E5C30303067} +\BKM@entry{id=286,dest={73756273756273656374696F6E2A2E353732},srcline={3704}}{5C3337365C3337375C3030304B5C3030306F5C303030635C303030685C303030725C303030655C3030307A5C303030655C303030705C303030745C3030305C3034305C3030304F5C303030625C303030655C303030725C303030665C3030306C5C3030305C3334345C303030635C303030685C303030655C3030306E5C303030695C3030306E5C303030685C303030615C3030306C5C30303074} +\BKM@entry{id=287,dest={73756273656374696F6E2A2E353734},srcline={3724}}{5C3337365C3337375C303030455C303030695C3030306E5C303030665C303030615C303030635C303030685C303030655C3030305C3034305C303030475C303030655C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030655C303030665C3030306F5C303030725C3030306D5C303030655C3030306C5C3030306E} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Beispiel eines Oberflächenintegrals}{16}{subsection*.560}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Punktmengen}{16}{subsection*.562}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Volumen eines Ellipsoid}{16}{subsubsection*.564}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Kochrezepte}{16}{subsection*.566}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Integralgrenzen von einem Hyper- und Hypograph bestimmen}{16}{subsubsection*.568}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Kochrezept Volumenberechnung}{16}{subsubsection*.570}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Kochrezept Oberflächeninhalt}{16}{subsubsection*.572}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Einfache Geometrieformeln}{16}{subsection*.574}\protected@file@percent } +\BKM@entry{id=288,dest={73756273656374696F6E2A2E353736},srcline={3}}{5C3337365C3337375C303030545C303030615C303030625C303030655C3030306C5C3030306C5C303030655C3030305C3034305C3030306D5C303030695C303030745C3030305C3034305C303030415C303030625C3030306C5C303030655C303030695C303030745C303030755C3030306E5C303030675C303030655C3030306E5C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030535C303030745C303030615C3030306D5C3030306D5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=289,dest={73756273656374696F6E2A2E353738},srcline={48}}{5C3337365C3337375C303030535C303030745C303030655C303030745C303030695C303030675C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=290,dest={73756273656374696F6E2A2E353830},srcline={66}}{5C3337365C3337375C303030505C303030615C303030725C303030745C303030695C303030615C3030306C5C303030625C303030725C303030755C303030635C303030685C3030307A5C303030655C303030725C3030306C5C303030655C303030675C303030755C3030306E5C30303067} +\BKM@entry{id=291,dest={73656374696F6E2A2E353832},srcline={101}}{5C3337365C3337375C303030455C303030725C303030675C3030305C3334345C3030306E5C3030307A5C303030755C3030306E5C303030675C303030655C3030306E5C3030305C3034305C303030615C303030755C303030735C3030305C3034305C3030304C5C303030695C3030306E5C303030415C3030306C5C30303067} +\BKM@entry{id=292,dest={73756273656374696F6E2A2E353834},srcline={103}}{5C3337365C3337375C303030445C303030655C303030745C303030655C303030725C3030306D5C303030695C3030306E5C303030615C3030306E5C303030745C30303065} +\BKM@entry{id=293,dest={73756273756273656374696F6E2A2E353836},srcline={114}}{5C3337365C3337375C3030304C5C303030615C303030705C3030306C5C303030615C303030635C303030655C3030305C3034305C303030455C3030306E5C303030745C303030775C303030695C303030635C3030306B5C3030306C5C303030755C3030306E5C30303067} +\BKM@entry{id=294,dest={73756273656374696F6E2A2E353838},srcline={138}}{5C3337365C3337375C303030455C303030695C303030675C303030655C3030306E5C303030775C303030655C303030725C303030745C303030655C3030305C3034305C303030755C3030306E5C303030645C3030305C3034305C303030455C303030695C303030675C303030655C3030306E5C303030765C303030655C3030306B5C303030745C3030306F5C303030725C303030655C3030306E} +\BKM@entry{id=295,dest={73756273756273656374696F6E2A2E353930},srcline={153}}{5C3337365C3337375C303030445C303030695C303030615C303030675C3030306F5C3030306E5C303030615C3030306C5C303030695C303030735C303030695C303030655C303030725C303030625C303030615C30303072} +\BKM@entry{id=296,dest={73756273656374696F6E2A2E353932},srcline={166}}{5C3337365C3337375C3030304D5C303030615C303030745C303030725C303030695C303030785C303030695C3030306E5C303030765C303030655C303030725C303030735C303030655C3030305C3034305C303030625C303030655C303030725C303030655C303030635C303030685C303030655C3030306E} +\BKM@entry{id=297,dest={73756273756273656374696F6E2A2E353934},srcline={170}}{5C3337365C3337375C303030455C303030785C303030705C3030306C5C303030695C3030307A5C303030695C303030745C303030655C3030305C3034305C303030465C3030306F5C303030725C3030306D5C303030655C3030306C5C3030306E} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Tabelle mit Ableitungen und Stammfunktionen}{17}{subsection*.576}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Stetige Funktionen}{17}{subsection*.578}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Partialbruchzerlegung}{17}{subsection*.580}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\nonumberline Ergänzungen aus LinAlg}{17}{section*.582}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Determinante}{17}{subsection*.584}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Laplace Entwicklung}{17}{subsubsection*.586}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Eigenwerte und Eigenvektoren}{17}{subsection*.588}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Diagonalisierbar}{17}{subsubsection*.590}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Matrixinverse berechen}{17}{subsection*.592}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Explizite Formeln}{17}{subsubsection*.594}\protected@file@percent } +\BKM@entry{id=298,dest={73656374696F6E2A2E353936},srcline={203}}{5C3337365C3337375C303030535C303030705C303030615C303030735C303030735C3030305C3034305C3030306D5C303030695C303030745C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C303030655C3030306E} +\BKM@entry{id=299,dest={73756273656374696F6E2A2E353938},srcline={205}}{5C3337365C3337375C303030545C303030615C3030306E5C303030675C303030655C3030306E5C303030735C303030735C303030755C303030625C303030735C303030745C303030695C303030745C303030755C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=300,dest={73756273656374696F6E2A2E363030},srcline={219}}{5C3337365C3337375C303030525C3030305C3337345C303030635C3030306B5C303030775C3030305C3334345C303030725C303030745C303030735C303030735C303030755C303030625C303030735C303030745C303030695C303030745C303030755C303030745C303030695C3030306F5C3030306E} +\BKM@entry{id=301,dest={73756273756273656374696F6E2A2E363032},srcline={229}}{5C3337365C3337375C303030545C303030615C303030625C303030655C3030306C5C3030306C5C30303065} +\BKM@entry{id=302,dest={73756273656374696F6E2A2E363034},srcline={252}}{5C3337365C3337375C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C303030655C3030305C3034305C3030305C3337345C303030625C303030655C303030725C3030305C3034305C303030655C303030695C3030306E5C303030655C3030305C3034305C303030505C303030655C303030725C303030695C3030306F5C303030645C303030655C3030305C3034305C3030305C3035305C3030304F5C303030725C303030745C303030685C3030306F5C303030675C3030306F5C3030306E5C303030615C3030306C5C303030695C303030745C3030305C3334345C303030745C303030735C303030725C303030655C3030306C5C303030615C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C303531} +\BKM@entry{id=303,dest={73756273656374696F6E2A2E363036},srcline={274}}{5C3337365C3337375C3030304C5C303030695C303030735C303030745C303030655C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030545C303030725C303030695C303030675C3030306F5C3030306E5C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030306E5C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C303030655C3030306E} +\BKM@entry{id=304,dest={73756273756273656374696F6E2A2E363038},srcline={296}}{5C3337365C3337375C303030545C303030615C303030625C303030655C3030306C5C3030306C5C303030655C3030305C3034305C303030765C3030306F5C3030306E5C3030305C3034305C303030615C303030755C303030735C303030675C303030655C303030775C303030655C303030725C303030745C303030655C303030745C303030655C3030306E5C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C303030655C3030306E} +\@writefile{toc}{\contentsline {section}{\nonumberline Spass mit Integralen}{18}{section*.596}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Tangenssubstitution}{18}{subsection*.598}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Rückwärtssubstitution}{18}{subsection*.600}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Tabelle}{18}{subsubsection*.602}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Integrale über eine Periode (Orthogonalitätsrelationen)}{18}{subsection*.604}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Liste von Trigonometrischen Integralen}{18}{subsection*.606}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Tabelle von ausgewerteten Integralen}{18}{subsubsection*.608}\protected@file@percent } +\BKM@entry{id=305,dest={73656374696F6E2A2E363130},srcline={332}}{5C3337365C3337375C303030525C303030655C3030306C5C303030655C303030765C303030615C3030306E5C303030745C303030655C3030305C3034305C303030505C3030306C5C3030306F5C303030745C30303073} +\BKM@entry{id=306,dest={73756273656374696F6E2A2E363132},srcline={334}}{5C3337365C3337375C303030545C303030725C303030695C303030675C3030306F5C3030306E5C3030306F5C3030306D5C303030655C303030745C303030725C303030695C303030735C303030635C303030685C303030655C3030305C3034305C303030465C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=307,dest={73756273656374696F6E2A2E363134},srcline={340}}{5C3337365C3337375C303030455C303030695C3030306E5C303030685C303030655C303030695C303030745C303030735C3030306B5C303030725C303030655C303030695C30303073} +\BKM@entry{id=308,dest={73756273656374696F6E2A2E363136},srcline={348}}{5C3337365C3337375C303030485C303030795C303030705C303030655C303030725C303030625C303030655C3030306C5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E} +\BKM@entry{id=309,dest={73756273656374696F6E2A2E363138},srcline={356}}{5C3337365C3337375C303030415C303030725C303030655C303030615C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C3030305C3035305C303030555C3030306D5C3030306B5C303030655C303030685C303030725C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C3034305C303030645C303030655C303030725C3030305C3034305C303030485C303030795C303030705C303030655C303030725C303030625C303030655C3030306C5C303030665C303030755C3030306E5C3030306B5C303030745C303030695C3030306F5C3030306E5C303030655C3030306E5C3030305C303531} +\@writefile{toc}{\contentsline {section}{\nonumberline Relevante Plots}{19}{section*.610}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Trigonometrische Funktionen}{19}{subsection*.612}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Einheitskreis}{19}{subsection*.614}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Hyperbelfunktionen}{19}{subsection*.616}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\nonumberline Areafunktionen (Umkehrfunktionen der Hyperbelfunktionen)}{19}{subsection*.618}\protected@file@percent } +\BKM@entry{id=310,dest={73756273656374696F6E2A2E363230},srcline={372}}{5C3337365C3337375C3030304B5C3030306F5C303030635C303030685C303030725C303030655C3030307A5C303030655C303030705C303030745C30303065} +\BKM@entry{id=311,dest={73756273756273656374696F6E2A2E363232},srcline={374}}{5C3337365C3337375C3030305C3333345C303030625C303030655C303030725C303030705C303030725C3030305C3337345C303030665C303030755C3030306E5C303030675C3030305C3034305C303030615C303030755C303030665C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C3030307A5C303030695C303030655C303030725C303030625C303030615C303030725C3030306B5C303030655C303030695C30303074} +\BKM@entry{id=312,dest={73756273756273656374696F6E2A2E363234},srcline={400}}{5C3337365C3337375C3030305C3333345C303030625C303030655C303030725C303030705C303030725C3030305C3337345C303030665C303030655C3030306E5C3030305C3034305C303030615C303030755C303030665C3030305C3034305C303030535C303030745C303030655C303030745C303030695C303030675C3030306B5C303030655C303030695C30303074} +\BKM@entry{id=313,dest={73756273756273656374696F6E2A2E363236},srcline={407}}{5C3337365C3337375C3030305C3333345C303030625C303030655C303030725C303030705C303030725C3030305C3337345C303030665C303030755C3030306E5C303030675C3030305C3034305C303030475C3030306C5C303030655C303030695C303030635C303030685C3030306D5C3030305C3334345C303030735C303030735C303030695C303030675C303030655C3030305C3034305C3030304B5C3030306F5C3030306E5C303030765C303030655C303030725C303030675C303030655C3030306E5C3030307A} +\@writefile{toc}{\contentsline {subsection}{\nonumberline Kochrezepte}{20}{subsection*.620}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Überprüfung auf Differenzierbarkeit}{20}{subsubsection*.622}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Überprüfen auf Stetigkeit}{20}{subsubsection*.624}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Überprüfung Gleichmässige Konvergenz}{20}{subsubsection*.626}\protected@file@percent } +\gdef \@abspage@last{20} diff --git a/zusammenfassung/analysis/AnalysisZF.fdb_latexmk b/zusammenfassung/analysis/AnalysisZF.fdb_latexmk new file mode 100644 index 0000000..b43a602 --- /dev/null +++ b/zusammenfassung/analysis/AnalysisZF.fdb_latexmk @@ -0,0 +1,271 @@ +# Fdb version 4 +["pdflatex"] 1727868525.01172 "AnalysisZF.tex" "AnalysisZF.pdf" "AnalysisZF" 1727868530.66242 0 + "/usr/local/texlive/2024/texmf-dist/fonts/enc/dvips/cm-super/cm-super-ts1.enc" 1136849721 2900 1537cc8184ad1792082cd229ecc269f4 "" + "/usr/local/texlive/2024/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/jknappen/ec/tcrm0800.tfm" 1136768653 1536 05df9db6aeccc4eea94fec15c9024f79 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm" 1246382020 1004 54797486969f23fa377b128694d548df "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex8.tfm" 1246382020 988 bdf658c3bfc2d96d3c8b02cfc1c94c20 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm" 1246382020 916 f87d7c45f9c908e672703b83b72241a3 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam5.tfm" 1246382020 924 9904cf1d39e9767e7a3622f2a125a565 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm" 1246382020 928 2dc8d444221b7a635bb58038579b861a "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm" 1246382020 908 2921f8a10601f252058503cc6570e581 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm5.tfm" 1246382020 940 75ac932a52f80982a9f8ea75d03a34cf "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm" 1246382020 940 228d6584342e91276bf566bcf9716b83 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx10.tfm" 1136768653 1328 c834bbb027764024c09d3d2bf908b5f0 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx5.tfm" 1136768653 1332 f817c21a1ba54560425663374f1b651a "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx6.tfm" 1136768653 1344 8a0be4fe4d376203000810ad4dc81558 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx8.tfm" 1136768653 1332 1fde11373e221473104d6cc5993f046e "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmex10.tfm" 1136768653 992 662f679a0b3d2d53c1b94050fdaa3f50 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmmi10.tfm" 1136768653 1528 abec98dbc43e172678c11b3b9031252a "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmmi6.tfm" 1136768653 1512 f21f83efb36853c0b70002322c1ab3ad "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmmi8.tfm" 1136768653 1520 eccf95517727cb11801f4f1aee3a21b4 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmr10.tfm" 1136768653 1296 45809c5a464d5f32c8f98ba97c1bb47f "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmr6.tfm" 1136768653 1300 b62933e007d01cfd073f79b963c01526 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmr8.tfm" 1136768653 1292 21c1c5bfeaebccffdb478fd231a0997d "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmss10.tfm" 1136768653 1316 b636689f1933f24d1294acdf6041daaa "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmss8.tfm" 1136768653 1296 d77f431d10d47c8ea2cc18cf45346274 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmssbx10.tfm" 1136768653 1272 e2d13f0df30bf3ad990bb9d028e37f34 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmsy10.tfm" 1136768653 1124 6c73e740cf17375f03eec0ee63599741 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmsy6.tfm" 1136768653 1116 933a60c408fc0a863a92debe84b2d294 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmsy8.tfm" 1136768653 1120 8b7d695260f3cff42e636090a8002094 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmti7.tfm" 1136768653 1492 86331993fe614793f5e7e755835c31c5 "" + "/usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmti8.tfm" 1136768653 1504 1747189e0441d1c18f3ea56fafc1c480 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx6.pfb" 1248133631 32378 2b20eba6bb36c716382b6d96240eaa69 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx8.pfb" 1248133631 32166 b0c356b15f19587482a9217ce1d8fa67 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi5.pfb" 1248133631 37912 77d683123f92148345f3fc36a38d9ab1 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi6.pfb" 1248133631 37166 8ab3487cbe3ab49ebce74c29ea2418db "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb" 1248133631 35469 70d41d2b9ea31d5d813066df7c99281c "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb" 1248133631 35752 024fb6c41858982481f6968b5fc26508 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr5.pfb" 1248133631 31809 8670ca339bf94e56da1fc21c80635e2a "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb" 1248133631 32734 69e00a6b65cedb993666e42eedb3d48f "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb" 1248133631 32726 0a1aea6fcd6468ee2cf64d891f5c43c8 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmss8.pfb" 1248133631 24420 52dbb8e8aa0069a1b987309557f8d303 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmssbx10.pfb" 1248133631 28902 2f5c04fd2884d1878057baa5aad22765 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy5.pfb" 1248133631 32915 7bf7720c61a5b3a7ff25b0964421c9b6 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy6.pfb" 1248133631 32587 1788b0c1c5b39540c96f5e42ccd6dae8 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb" 1248133631 32626 4f5c1b83753b1dd3a97d1b399a005b4b "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmti8.pfb" 1248133631 35660 fb24af7afbadb71801619f1415838111 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cmextra/cmex7.pfb" 1248133631 30457 bc0868ebece724ed7c3d37e3d9bff7bd "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cmextra/cmex8.pfb" 1248133631 30273 87a352d78b6810ae5cfdc68d2fb827b2 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm10.pfb" 1248133631 34694 ad62b13721ee8eda1dcc8993c8bd7041 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm7.pfb" 1248133631 35309 940e81a5b9e04201a07e8b33a3ae6e64 "" + "/usr/local/texlive/2024/texmf-dist/fonts/type1/public/cm-super/sfrm0800.pfb" 1215737283 164227 3df942b4ff2124425d8fb1b6d3e01c7a "" + "/usr/local/texlive/2024/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1461363279 71627 94eb9990bed73c364d7f53f960cc8c5b "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/atbegshi/atbegshi.sty" 1575674566 24708 5584a51a7101caf7e6bbf1fc27d8f7b1 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/german.ldf" 1705784828 2317 770765b11eb80315440660ff5398cbfc "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/germanb.ldf" 1705784828 9838 b9de1c6e35ce08917e2d0fbc14c06d99 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/babel/babel.sty" 1707339808 146276 10a40dabec03ce18494af0c3a51bcbdc "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/babel/locale/de/babel-de-1901.ini" 1661803479 4106 e59485586863ca0479ccbae36abcfcf2 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/babel/locale/de/babel-german.tex" 1681846791 699 565e921a0b7b8366adf163b0ecc00e44 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/babel/txtbabel.def" 1704662920 6948 df63e25be1d2bc35bbad5a0141f41348 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty" 1576625341 40635 c40361e206be584d448876bba8a64a3b "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/bitset/bitset.sty" 1576016050 33961 6b5c75130e435b2bfdb9f480a09a39f9 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty" 1576625223 8371 9d55b8bd010bc717624922fb3477d92e "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/iftex/iftex.sty" 1644112042 7237 bdd120a32c8fdb4b433cf9ca2e7cd98a "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/iftex/ifvtex.sty" 1572645307 1057 525c2192b5febbd8c1f662c9468335bb "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/infwarerr/infwarerr.sty" 1575499628 8356 7bbb2c2373aa810be568c29e333da8ed "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/intcalc/intcalc.sty" 1576625065 31769 002a487f55041f8e805cfbf6385ffd97 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty" 1576878844 5412 d5a2436094cd7be85769db90f29250a6 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty" 1701727651 17865 1a9bd36b4f98178fa551aca822290953 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pdfescape/pdfescape.sty" 1576015897 19007 15924f7228aca6c6d184b115f4baa231 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty" 1593379760 20089 80423eac55aa175305d35b49e04fe23b "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex" 1673816307 1016 1c2b89187d12a2768764b83b4945667c "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex" 1601326656 43820 1fef971b75380574ab35a0d37fd92608 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex" 1601326656 19324 f4e4c6403dd0f1605fd20ed22fa79dea "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex" 1601326656 6038 ccb406740cc3f03bbfb58ad504fe8c27 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex" 1673816307 6911 f6d4cf5a3fef5cc879d668b810e82868 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex" 1601326656 4883 42daaf41e27c3735286e23e48d2d7af9 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex" 1601326656 2544 8c06d2a7f0f469616ac9e13db6d2f842 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex" 1601326656 44195 5e390c414de027626ca5e2df888fa68d "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex" 1601326656 17311 2ef6b2e29e2fc6a2fc8d6d652176e257 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex" 1601326656 21302 788a79944eb22192a4929e46963a3067 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex" 1673816307 9691 3d42d89522f4650c2f3dc616ca2b925e "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex" 1601326656 33335 dd1fa4814d4e51f18be97d88bf0da60c "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex" 1601326656 2965 4c2b1f4e0826925746439038172e5d6f "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex" 1601326656 5196 2cc249e0ee7e03da5f5f6589257b1e5b "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex" 1673816307 20821 7579108c1e9363e61a0b1584778804aa "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex" 1601326656 35249 abd4adf948f960299a4b3d27c5dddf46 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex" 1673816307 22012 81b34a0aa8fa1a6158cc6220b00e4f10 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex" 1601326656 8893 e851de2175338fdf7c17f3e091d94618 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex" 1601326656 1179 5483d86c1582c569e665c74efab6281f "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex" 1608933718 11518 738408f795261b70ce8dd47459171309 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex" 1673816307 186782 af500404a9edec4d362912fe762ded92 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex" 1601326656 2563 d5b174eb7709fd6bdcc2f70953dbdf8e "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex" 1601326656 32995 ac577023e12c0e4bd8aa420b2e852d1a "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfint.code.tex" 1557692582 3063 8c415c68a0f3394e45cfeca0b65f6ee6 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex" 1673816307 949 cea70942e7b7eddabfb3186befada2e6 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex" 1673816307 13270 2e54f2ce7622437bf37e013d399743e3 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex" 1673816307 104717 9b2393fbf004a0ce7fa688dbce423848 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex" 1601326656 10165 cec5fa73d49da442e56efc2d605ef154 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex" 1601326656 28178 41c17713108e0795aac6fef3d275fbca "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex" 1673816307 9649 85779d3d8d573bfd2cd4137ba8202e60 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex" 1601326656 3865 ac538ab80c5cf82b345016e474786549 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex" 1557692582 3177 27d85c44fbfe09ff3b2cf2879e3ea434 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex" 1621110968 11024 0179538121bc2dba172013a3ef89519f "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex" 1673816307 7890 0a86dbf4edfd88d022e0d889ec78cc03 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex" 1601326656 3379 781797a101f647bab82741a99944a229 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex" 1601326656 92405 f515f31275db273f97b9d8f52e1b0736 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex" 1673816307 37466 97b0a1ba732e306a1a2034f5a73e239f "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex" 1601326656 8471 c2883569d03f69e8e1cabfef4999cfd7 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex" 1673816307 21211 1e73ec76bd73964d84197cc3d2685b01 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex" 1601326656 16121 346f9013d34804439f7436ff6786cef7 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex" 1673816307 44792 271e2e1934f34c759f4dedb1e14a5015 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/pgf.revision.tex" 1673816307 114 e6d443369d0673933b38834bf99e422d "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg" 1601326656 926 2963ea0dcf6cc6c0a770b69ec46a477b "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def" 1673816307 5542 32f75a31ea6c3a7e1148cd6d5e93dbb7 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def" 1673816307 12612 7774ba67bfd72e593c4436c2de6201e3 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex" 1673816307 61351 bc5f86e0355834391e736e97a61abced "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex" 1601326656 1896 b8e0ca0ac371d74c0ca05583f6313c91 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex" 1601326656 7778 53c8b5623d80238f6a20aa1df1868e63 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex" 1673816307 24033 d8893a1ec4d1bfa101b172754743d340 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex" 1673816307 39784 414c54e866ebab4b801e2ad81d9b21d8 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfiltered.code.tex" 1673816307 37433 940bc6d409f1ffd298adfdcaf125dd86 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex" 1673816307 4385 510565c2f07998c8a0e14f0ec07ff23c "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex" 1673816307 29239 22e8c7516012992a49873eff0d868fed "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def" 1673816307 6950 8524a062d82b7afdc4a88a57cb377784 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/stringenc/stringenc.sty" 1575152242 21514 b7557edcee22835ef6b03ede1802dad4 "" + "/usr/local/texlive/2024/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty" 1576624663 7008 f92eaa0a3872ed622bbf538217cd2ab7 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amsfonts.sty" 1359763108 5949 3f3fd50a8cc94c3d4cbf4fc66cd3df1c "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amssymb.sty" 1359763108 13829 94730e64147574077f8ecfea9bb69af4 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsa.fd" 1359763108 961 6518c6525a34feb5e8250ffa91731cff "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsb.fd" 1359763108 961 d02606146ba5601b5645f987c92e6193 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsbsy.sty" 1686341992 2222 499d61426192c39efd8f410ee1a52b9c "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amscd.sty" 1686341992 5321 daa52b1eccaf734786512391bf3d1e5d "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsgen.sty" 1686341992 4173 82ac04dfb1256038fad068287fbb4fe6 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsmath.sty" 1686341992 88371 d84032c0f422c3d1e282266c01bef237 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsopn.sty" 1686341992 4474 b811654f4bf125f11506d13d13647efb "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amstext.sty" 1686341992 2444 0d0c1ee65478277e8015d65b86983da2 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/atveryend/atveryend.sty" 1576191570 19336 ce7ae9438967282886b3b036cfad1e4d "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/auxhook/auxhook.sty" 1576625391 3935 57aa3c3e203a5c2effb4d2bd2efbc323 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/base/atbegshi-ltx.sty" 1705352648 3045 273c666a54e60b9f730964f431a56c1b "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/base/atveryend-ltx.sty" 1705352648 2462 6bc53756156dbd71c1ad550d30a3b93f "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/base/inputenc.sty" 1705352648 5048 425739d70251273bf93e3d51f3c40048 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/blindtext/blindtext.sty" 1325892463 47295 de48b7f8ebf4b54709a2f6b2c7106dd5 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bkm-pdftex.def" 1702241854 8818 aa5157b46368efebf023abff55611467 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bookmark.sty" 1702241854 18245 97e6be180cf07bb6f7008cfdaaecfce5 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/booktabs/booktabs.sty" 1579038678 6078 f1cb470c9199e7110a27851508ed7a5c "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/enumitem/enumitem.sty" 1561238569 51697 f8f08183cd2080d9d18a41432d651dfb "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/environ/environ.sty" 1399239813 4378 f429f0da968c278653359293040a8f52 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty" 1579991033 13886 d1306dcf79a944f6988e688c1785f9ce "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/etoolbox/etoolbox.sty" 1601931149 46845 3b58f70c6e861a13d927bff09d35ecbc "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/extsizes/size8.clo" 1137110130 6172 5062a8faf7cb200267aa33f36102c207 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/footmisc/footmisc.sty" 1688586963 21399 e9fa1517a82f349507e998594ef20b82 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/geometry/geometry.sty" 1578002852 41601 9cf6c5257b1bc7af01a58859749dd37a "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/color.cfg" 1459978653 1213 620bba36b25224fa9b7e1ccb4ecb76fd "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/graphics.cfg" 1465944070 1224 978390e9c2234eab29404bc21b268d1e "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics-def/pdftex.def" 1663965824 19448 1e988b341dda20961a6b931bcde55519 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/color.sty" 1654720880 7233 e46ce9241d2b2ca2a78155475fdd557a "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/dvipsnam.def" 1654720880 5009 d242512eef244b70f2fc3fde14419206 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphics.sty" 1654720880 18387 8f900a490197ebaf93c02ae9476d4b09 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphicx.sty" 1654720880 8010 a8d949cbdbc5c983593827c9eec252e1 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/keyval.sty" 1654720880 2671 7e67d78d9b88c845599a85b2d41f2e39 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/mathcolor.ltx" 1667332637 2885 9c645d672ae17285bba324998918efd8 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/trig.sty" 1654720880 4023 293ea1c16429fc0c4cf605f4da1791a9 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/hycolor/hycolor.sty" 1580250785 17914 4c28a13fc3d975e6e81c9bea1d697276 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hpdftex.def" 1705871765 48154 e46bf8adeb936500541441171d61726d "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hyperref.sty" 1705871765 220920 fd3cbb5f1a2bc9b8f451b8b7d8171264 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/nameref.sty" 1705871765 11026 182c63f139a71afd30a28e5f1ed2cd1c "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/pd1enc.def" 1705871765 14249 e67cb186717b7ab18d14a4875e7e98b5 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/puenc.def" 1705871765 117112 05831178ece2cad4d9629dcf65099b11 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrartcl.cls" 1688762466 242934 15a8ae95c90cac411df0d40ce5284768 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrbase.sty" 1688762466 100856 24b70029ad44c2ee829db2529cf4ee23 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrkbase.sty" 1688762466 21943 93cf6c456e50f74225092b8714462fa4 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty" 1688762466 11185 15c86b5a61db19da88ab941ca5b70a12 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile.sty" 1688762466 3328 3d5fc41a419bf18130ce17d90a23c295 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlogo.sty" 1688762466 2162 418e29bcf2b8059e8a9ee1ea4d0d0c87 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/tocbasic.sty" 1688762466 107286 dc7973acee1c3708d665791407e3832e "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/typearea.sty" 1688762466 58382 11e5cfa7a7ea68055da565b4657ea350 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/kvoptions/kvoptions.sty" 1655478651 22555 6d8e155cfef6d82c3d5c742fea7c992e "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty" 1665067230 13815 760b0c02f691ea230f5359c4e1de23a7 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def" 1708463273 30006 3d512c0edd558928ddea1690180ef77e "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg" 1279039959 678 4792914a8f45be57bb98413425e4c7af "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.cfg" 1708549794 1830 20af84c556326f7c12b9202ebe363f56 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.sty" 1708549794 81322 d02238bdeb305f2c9f9d0229f99371d0 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstmisc.sty" 1708549794 77022 5c8c440739265e7ba15b8379ece6ecd7 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstpatch.sty" 1708549794 329 f19f5da7234b51d16764e23d20999c73 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/listingsutf8/listingsutf8.sty" 1576101256 5148 1baf596b2560b44d9ff1889dc1d7564e "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/empheq.sty" 1585083035 46840 5d1bd8b17a285b97e58ae6cb634d6305 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mathtools.sty" 1710187076 62672 9ff036bc89365461cc2bd482cc1e4879 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mhsetup.sty" 1616101747 5582 a43dedf8e5ec418356f1e9dfe5d29fc3 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/multirow/multirow.sty" 1615845910 6149 2398eec4faa1ee24ff761581e580ecf1 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pdfcol/pdfcol.sty" 1663877585 8086 ac143843b6ea88d172677dc3ed532925 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty" 1601326656 1090 bae35ef70b3168089ef166db3e66f5b2 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty" 1673816307 373 00b204b1d7d095b892ad31a7494b0373 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty" 1601326656 21013 f4ff83d25bb56552493b030f27c075ae "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty" 1601326656 989 c49c8ae06d96f8b15869da7428047b1e "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty" 1601326656 339 c2e180022e3afdb99c7d0ea5ce469b7d "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/math/pgfmath.sty" 1601326656 306 c56a323ca5bf9242f54474ced10fca71 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty" 1601326656 443 8c872229db56122037e86bcda49e14f3 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgffor.sty" 1601326656 348 ee405e64380c11319f0e249fed57e6c5 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty" 1601326656 274 5ae372b7df79135d240456a1c6f2cf9a "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty" 1601326656 325 f9f16d12354225b7dd52a3321f085955 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/refcount/refcount.sty" 1576624809 9878 9e94e8fa600d95f9c7731bb21dfb67a4 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty" 1657483315 9714 ba3194bd52c8499b3f1e3eb91d409670 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex" 1704919444 34667 aedede1f84e908a7a38dccbeea73e77f "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbexternal.code.tex" 1704919444 9105 684b3842668cd2612ef90ae984e7d0dd "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbfitting.code.tex" 1704919444 17164 845c778959cb29827bcbee2c259881df "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbhooks.code.tex" 1704919444 10373 37b37e119c471479296ef09959a9ec73 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistings.code.tex" 1704919444 3414 b3cf2e4e6504127c8273a20924a66391 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistingscore.code.tex" 1704919444 16147 f77b6ad339bd3eb9a170cb00dc43ee75 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistingsutf8.code.tex" 1704919444 1414 28d0eb45dbc2897c087b8dd12648b3a0 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbmagazine.code.tex" 1704919444 5636 a996dcbc5cfbd76905c09ea5f29ef765 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbposter.code.tex" 1704919444 12459 4a967ec251afd767745766f71757d298 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbprocessing.code.tex" 1704919444 2349 c47e45fd2913976863f9c08690aceccf "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbraster.code.tex" 1704919444 9373 4d00bdc113759870347155962a509560 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex" 1704919444 84115 4b15eb64e93c3991d815e8170f8d1a95 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex" 1704919444 10040 27e9c9197a2de0b5b4144c323ddb740a "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbtheorems.code.tex" 1704919444 12634 be174de0bbe693a928b66aec9f31293c "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbvignette.code.tex" 1704919444 12747 1604b54e4b98c8d1cde2f9df7d42085a "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty" 1704919444 103614 1ca07ac773e16c641eabdcbf98c7511d "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty" 1691524336 2573 42712c9e0a2df004e43df5b3c95f0c1e "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty" 1691524336 1120 ba535da48caa03bf1fd3f03ea87779f8 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.code.tex" 1691524336 10931 717eb52299f416934beb8b2b7cd8cee6 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tools/afterpage.sty" 1698869629 4085 b09ffbe3858cbb65749bb88cc092d0fc "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tools/array.sty" 1698869629 12667 e4b5eb11e4b7239e6c8a52bbe074a6c6 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tools/calc.sty" 1698869629 10214 547fd4d29642cb7c80bf54b49d447f01 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tools/multicol.sty" 1686341992 32515 51caec75eda9c8890135f12f1a4eddc3 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tools/verbatim.sty" 1700689882 7500 db31c3d04f8bc9010e47a5efbbace9ff "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/tools/xspace.sty" 1686341992 4545 9f5ea23ab1c91476c42749893f790666 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/trimspaces/trimspaces.sty" 1253232110 1380 971a51b00a14503ddf754cab24c3f209 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 "" + "/usr/local/texlive/2024/texmf-dist/tex/latex/xcolor/xcolor.sty" 1700082560 55487 80a65caedd3722f4c20a14a69e785d8f "" + "/usr/local/texlive/2024/texmf-dist/web2c/texmf.cnf" 1708706663 41649 5d6ae549fbbcb850a863f69aa41f3d10 "" + "/usr/local/texlive/2024/texmf-var/fonts/map/pdftex/updmap/pdftex.map" 1711055045.32261 5467645 128b85b7cde5f5edc5cb7f1dd7ff8736 "" + "/usr/local/texlive/2024/texmf-var/web2c/pdftex/pdflatex.fmt" 1711054956 8221425 63ca9aea1ec9845d43dcdcf729b76bd4 "" + "/usr/local/texlive/2024/texmf.cnf" 1710266656 577 e590dabc9e28c5b61546e15f63eebcdf "" + "AnalysisZF.aux" 1727868530.45086 144034 23c66820542c5bfc39893b3a7f7acb29 "pdflatex" + "AnalysisZF.out" 1727868526.70032 0 d41d8cd98f00b204e9800998ecf8427e "pdflatex" + "AnalysisZF.tex" 1727868513.04041 153122 ba03df7dc446a22191410c6dac3486de "" + "Bilder/DGL_Partikulare.jpeg" 1679229886 1796917 b51f2e13a994744fa40f03e7382a7f67 "" + "Bilder/Delta_Epsilon_Kriterium.png" 1691067486 1222081 5b189a075d60bf7c0b96efd686511266 "" + "Bilder/Injektiv.JPG" 1688052086 36227 1bd0bbe2dc4c929128a70dfd46d8ab45 "" + "Bilder/Jordan-Messbar.png" 1684996100 26134 e53baa2faf466da727924ab33fa7b17e "" + "Bilder/Kettenregel.png" 1681564214 33278 da90ea092aaf02655c5a26112bc13b72 "" + "Bilder/Kettenregel_0.png" 1681652216 39355 1029eae20eb750c263bf9210c83f514e "" + "Bilder/Oberflachenintegral_BSP.png" 1691005644 28275 67471990a5828c3a343cbfdbc5f59e0b "" + "Bilder/PartiellAbleitung.png" 1681461738 154540 8e32bda5352b85f3af842e2329024764 "" + "Bilder/Potential.png" 1691140910 15645 a3b9bee4742f9fc5262132d5cf8f3435 "" + "Bilder/Quader.png" 1690914012 11768 36274927aee9845d8935162c7068b626 "" + "Bilder/R-Integral.png" 1682332332 52094 c76d8698e55a6ae6bc740f66b463312b "" + "Bilder/RiemannSumme.png" 1688648740 19584 8bd1164fc84421b014aeadbd44a4db73 "" + "Bilder/Sinh_cosh_tanh.png" 1690978098 78813 b315a26f810561d01f153b590af54f9d "" + "Bilder/Stokes.png" 1691835946 87337 751f092b2ab11bd1e44599e3035b09b0 "" + "Bilder/Stueckweise_Gebit.png" 1690983914 13057 8eacc4a81ab0c249ca12da23c0d2fb53 "" + "Bilder/Substitutionsregel.png" 1690995586 25299 2605ed995051a86f63a9697d86747f31 "" + "Bilder/Surjektiv.JPG" 1688052068 41097 d4384db9ebae7268927fbaba84fdd0b6 "" + "Bilder/TopoStetigkeit.png" 1680541246 33225 dbd342d5c1156d084b04cc2ecce0b995 "" + "Bilder/Trigonometric_functions.png" 1690978614 155596 bbbb055012f95eeca2c82b8e4d82048d "" + "Bilder/Umgebung.jpg" 1680528866 24333 948a57da65a04275b1686b3b7f4b1290 "" + "Bilder/arcosh.png" 1690978146 75494 23aeb8bb05a15e6a206b0c09942fa927 "" + "Bilder/arsinh.png" 1690978134 75952 5b71f34bfa4c5b0e9909304dc73d6997 "" + "Bilder/artanh.png" 1690978156 68341 49e3e0010ac6d468fe3a7a93eecfdb24 "" + "Bilder/unit-circle.jpg" 1629460590 182131 9868431a368944f165c567e98312910c "" + "Bilder/z_02.jpg" 1667248812 33155 cdc0094cce248560474a161572b1640e "" + "Bilder/z_03.jpg" 1688190326 32459 442b5056356c6c5f1867a05ccef5f8e0 "" + "sections/Ubersicht.tex" 1727789973.16159 24510 e6ad185776917dc6828ccb98e00a672b "" + (generated) + "AnalysisZF.aux" + "AnalysisZF.log" + "AnalysisZF.out" + "AnalysisZF.pdf" + (rewritten before read) diff --git a/zusammenfassung/analysis/AnalysisZF.fls b/zusammenfassung/analysis/AnalysisZF.fls new file mode 100644 index 0000000..c4a9104 --- /dev/null +++ b/zusammenfassung/analysis/AnalysisZF.fls @@ -0,0 +1,537 @@ +PWD /Users/jirayu/Nextcloud/Vault/edu/ETH/zusammenfassung/analysis +INPUT /usr/local/texlive/2024/texmf.cnf +INPUT /usr/local/texlive/2024/texmf-dist/web2c/texmf.cnf +INPUT /usr/local/texlive/2024/texmf-var/web2c/pdftex/pdflatex.fmt +INPUT AnalysisZF.tex +OUTPUT AnalysisZF.log +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrartcl.cls +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrartcl.cls +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrkbase.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrkbase.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrbase.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrbase.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlogo.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlogo.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/keyval.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/keyval.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/tocbasic.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/tocbasic.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/typearea.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/footmisc/footmisc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/extsizes/size8.clo +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/extsizes/size8.clo +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/extsizes/size8.clo +INPUT /usr/local/texlive/2024/texmf-dist/fonts/map/fontname/texfonts.map +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmr8.tfm +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/typearea.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel/babel.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel/babel.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel/txtbabel.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/german.ldf +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/german.ldf +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/german.ldf +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/germanb.ldf +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel/locale/de/babel-german.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel/locale/de/babel-german.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel/locale/de/babel-german.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/babel/locale/de/babel-de-1901.ini +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/geometry/geometry.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/geometry/geometry.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/iftex/ifvtex.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/iftex/ifvtex.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/iftex/iftex.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/iftex/iftex.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/xcolor/xcolor.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/xcolor/xcolor.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/color.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/color.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/color.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-def/pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-def/pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-def/pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/mathcolor.ltx +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/mathcolor.ltx +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/mathcolor.ltx +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/dvipsnam.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/dvipsnam.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/dvipsnam.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hyperref.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hyperref.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pdfescape/pdfescape.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pdfescape/pdfescape.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/infwarerr/infwarerr.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/infwarerr/infwarerr.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hycolor/hycolor.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hycolor/hycolor.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/auxhook/auxhook.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/auxhook/auxhook.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/nameref.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/nameref.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/refcount/refcount.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/refcount/refcount.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/kvoptions/kvoptions.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/kvoptions/kvoptions.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/etoolbox/etoolbox.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/etoolbox/etoolbox.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/pd1enc.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/pd1enc.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/pd1enc.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/intcalc/intcalc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/intcalc/intcalc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/puenc.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/puenc.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/puenc.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/url/url.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/url/url.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/bitset/bitset.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/bitset/bitset.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/atbegshi/atbegshi.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/base/atbegshi-ltx.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/base/atbegshi-ltx.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hpdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hpdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hpdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/atveryend/atveryend.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/base/atveryend-ltx.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/base/atveryend-ltx.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amscd.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amscd.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsgen.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsgen.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsmath.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsmath.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsopn.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amstext.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amstext.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsbsy.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsbsy.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsopn.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amssymb.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amssymb.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amsfonts.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amsfonts.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/blindtext/blindtext.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/blindtext/blindtext.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/xspace.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/xspace.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/empheq.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/empheq.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mhsetup.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mhsetup.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mathtools.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mathtools.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/calc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/calc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/enumitem/enumitem.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/enumitem/enumitem.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/multicol.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/multicol.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphicx.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphicx.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphics.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphics.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/trig.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/trig.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/graphics.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/graphics.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/graphics.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/pgf.revision.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/pgf.revision.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfiltered.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfint.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgffor.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgffor.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/math/pgfmath.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pgf/math/pgfmath.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/array.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/array.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/multirow/multirow.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/multirow/multirow.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/booktabs/booktabs.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/booktabs/booktabs.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/verbatim.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/verbatim.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/environ/environ.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/environ/environ.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/trimspaces/trimspaces.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/trimspaces/trimspaces.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbraster.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pdfcol/pdfcol.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/pdfcol/pdfcol.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/graphics/color.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbhooks.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbtheorems.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbfitting.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistingsutf8.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistings.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstpatch.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstpatch.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstpatch.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstmisc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstmisc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstmisc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistingscore.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbprocessing.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listingsutf8/listingsutf8.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/listingsutf8/listingsutf8.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/stringenc/stringenc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/stringenc/stringenc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbexternal.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbmagazine.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbvignette.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex +OUTPUT AnalysisZF.pdf +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbposter.code.tex +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/afterpage.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/tools/afterpage.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def +INPUT ./AnalysisZF.aux +INPUT ./AnalysisZF.aux +INPUT AnalysisZF.aux +OUTPUT AnalysisZF.aux +INPUT /usr/local/texlive/2024/texmf-dist/tex/context/base/mkii/supp-pdf.mkii +INPUT /usr/local/texlive/2024/texmf-dist/tex/context/base/mkii/supp-pdf.mkii +INPUT /usr/local/texlive/2024/texmf-dist/tex/context/base/mkii/supp-pdf.mkii +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg +INPUT ./AnalysisZF.out +INPUT ./AnalysisZF.out +INPUT AnalysisZF.out +INPUT AnalysisZF.out +INPUT ./AnalysisZF.out +INPUT ./AnalysisZF.out +OUTPUT AnalysisZF.out +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bookmark.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bookmark.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bkm-pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bkm-pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bkm-pdftex.def +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/base/inputenc.sty +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/base/inputenc.sty +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmr10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmss8.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmssbx10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmssbx10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmss10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmr6.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmmi10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmmi8.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmmi6.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmsy10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmsy8.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmsy6.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmex10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex8.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsa.fd +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsa.fd +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsa.fd +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsb.fd +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsb.fd +INPUT /usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsb.fd +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam5.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm5.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmti8.tfm +INPUT ./Bilder/Surjektiv.JPG +INPUT ./Bilder/Surjektiv.JPG +INPUT ./Bilder/Surjektiv.JPG +INPUT ./Bilder/Surjektiv.JPG +INPUT ./Bilder/Surjektiv.JPG +INPUT ./Bilder/Injektiv.JPG +INPUT ./Bilder/Injektiv.JPG +INPUT ./Bilder/Injektiv.JPG +INPUT ./Bilder/Injektiv.JPG +INPUT ./Bilder/Injektiv.JPG +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx8.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx6.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx5.tfm +INPUT /usr/local/texlive/2024/texmf-var/fonts/map/pdftex/updmap/pdftex.map +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmbx10.tfm +INPUT ./Bilder/z_02.jpg +INPUT ./Bilder/z_02.jpg +INPUT ./Bilder/z_02.jpg +INPUT ./Bilder/z_02.jpg +INPUT ./Bilder/z_02.jpg +INPUT ./Bilder/z_03.jpg +INPUT ./Bilder/z_03.jpg +INPUT ./Bilder/z_03.jpg +INPUT ./Bilder/z_03.jpg +INPUT ./Bilder/z_03.jpg +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/jknappen/ec/tcrm0800.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/enc/dvips/cm-super/cm-super-ts1.enc +INPUT ./Bilder/Delta_Epsilon_Kriterium.png +INPUT ./Bilder/Delta_Epsilon_Kriterium.png +INPUT ./Bilder/Delta_Epsilon_Kriterium.png +INPUT ./Bilder/Delta_Epsilon_Kriterium.png +INPUT ./Bilder/Delta_Epsilon_Kriterium.png +INPUT ./Bilder/Umgebung.jpg +INPUT ./Bilder/Umgebung.jpg +INPUT ./Bilder/Umgebung.jpg +INPUT ./Bilder/Umgebung.jpg +INPUT ./Bilder/Umgebung.jpg +INPUT ./Bilder/TopoStetigkeit.png +INPUT ./Bilder/TopoStetigkeit.png +INPUT ./Bilder/TopoStetigkeit.png +INPUT ./Bilder/TopoStetigkeit.png +INPUT ./Bilder/TopoStetigkeit.png +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmti7.tfm +INPUT /usr/local/texlive/2024/texmf-dist/fonts/tfm/public/cm/cmti7.tfm +INPUT ./Bilder/RiemannSumme.png +INPUT ./Bilder/RiemannSumme.png +INPUT ./Bilder/RiemannSumme.png +INPUT ./Bilder/RiemannSumme.png +INPUT ./Bilder/RiemannSumme.png +INPUT ./Bilder/R-Integral.png +INPUT ./Bilder/R-Integral.png +INPUT ./Bilder/R-Integral.png +INPUT ./Bilder/R-Integral.png +INPUT ./Bilder/R-Integral.png +INPUT ./Bilder/DGL_Partikulare.jpeg +INPUT ./Bilder/DGL_Partikulare.jpeg +INPUT ./Bilder/DGL_Partikulare.jpeg +INPUT ./Bilder/DGL_Partikulare.jpeg +INPUT ./Bilder/DGL_Partikulare.jpeg +INPUT ./Bilder/PartiellAbleitung.png +INPUT ./Bilder/PartiellAbleitung.png +INPUT ./Bilder/PartiellAbleitung.png +INPUT ./Bilder/PartiellAbleitung.png +INPUT ./Bilder/PartiellAbleitung.png +INPUT ./Bilder/Kettenregel_0.png +INPUT ./Bilder/Kettenregel_0.png +INPUT ./Bilder/Kettenregel_0.png +INPUT ./Bilder/Kettenregel_0.png +INPUT ./Bilder/Kettenregel_0.png +INPUT ./Bilder/Kettenregel.png +INPUT ./Bilder/Kettenregel.png +INPUT ./Bilder/Kettenregel.png +INPUT ./Bilder/Kettenregel.png +INPUT ./Bilder/Kettenregel.png +INPUT ./Bilder/Potential.png +INPUT ./Bilder/Potential.png +INPUT ./Bilder/Potential.png +INPUT ./Bilder/Potential.png +INPUT ./Bilder/Potential.png +INPUT ./Bilder/Quader.png +INPUT ./Bilder/Quader.png +INPUT ./Bilder/Quader.png +INPUT ./Bilder/Quader.png +INPUT ./Bilder/Quader.png +INPUT ./Bilder/Jordan-Messbar.png +INPUT ./Bilder/Jordan-Messbar.png +INPUT ./Bilder/Jordan-Messbar.png +INPUT ./Bilder/Jordan-Messbar.png +INPUT ./Bilder/Jordan-Messbar.png +INPUT ./Bilder/Stueckweise_Gebit.png +INPUT ./Bilder/Stueckweise_Gebit.png +INPUT ./Bilder/Stueckweise_Gebit.png +INPUT ./Bilder/Stueckweise_Gebit.png +INPUT ./Bilder/Stueckweise_Gebit.png +INPUT ./Bilder/Substitutionsregel.png +INPUT ./Bilder/Substitutionsregel.png +INPUT ./Bilder/Substitutionsregel.png +INPUT ./Bilder/Substitutionsregel.png +INPUT ./Bilder/Substitutionsregel.png +INPUT ./Bilder/Stokes.png +INPUT ./Bilder/Stokes.png +INPUT ./Bilder/Stokes.png +INPUT ./Bilder/Stokes.png +INPUT ./Bilder/Stokes.png +INPUT ./Bilder/Oberflachenintegral_BSP.png +INPUT ./Bilder/Oberflachenintegral_BSP.png +INPUT ./Bilder/Oberflachenintegral_BSP.png +INPUT ./Bilder/Oberflachenintegral_BSP.png +INPUT ./Bilder/Oberflachenintegral_BSP.png +INPUT ./sections/Ubersicht.tex +INPUT ./sections/Ubersicht.tex +INPUT sections/Ubersicht.tex +INPUT ./Bilder/Trigonometric_functions.png +INPUT ./Bilder/Trigonometric_functions.png +INPUT ./Bilder/Trigonometric_functions.png +INPUT ./Bilder/Trigonometric_functions.png +INPUT ./Bilder/Trigonometric_functions.png +INPUT ./Bilder/unit-circle.jpg +INPUT ./Bilder/unit-circle.jpg +INPUT ./Bilder/unit-circle.jpg +INPUT ./Bilder/unit-circle.jpg +INPUT ./Bilder/unit-circle.jpg +INPUT ./Bilder/Sinh_cosh_tanh.png +INPUT ./Bilder/Sinh_cosh_tanh.png +INPUT ./Bilder/Sinh_cosh_tanh.png +INPUT ./Bilder/Sinh_cosh_tanh.png +INPUT ./Bilder/Sinh_cosh_tanh.png +INPUT ./Bilder/arsinh.png +INPUT ./Bilder/arsinh.png +INPUT ./Bilder/arsinh.png +INPUT ./Bilder/arsinh.png +INPUT ./Bilder/arsinh.png +INPUT ./Bilder/arcosh.png +INPUT ./Bilder/arcosh.png +INPUT ./Bilder/arcosh.png +INPUT ./Bilder/arcosh.png +INPUT ./Bilder/arcosh.png +INPUT ./Bilder/artanh.png +INPUT ./Bilder/artanh.png +INPUT ./Bilder/artanh.png +INPUT ./Bilder/artanh.png +INPUT ./Bilder/artanh.png +INPUT AnalysisZF.aux +INPUT ./AnalysisZF.out +INPUT ./AnalysisZF.out +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx6.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx8.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cmextra/cmex7.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cmextra/cmex8.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi5.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi6.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr5.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmss8.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmssbx10.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy5.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy6.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/cm/cmti8.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm10.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm7.pfb +INPUT /usr/local/texlive/2024/texmf-dist/fonts/type1/public/cm-super/sfrm0800.pfb diff --git a/zusammenfassung/analysis/AnalysisZF.log b/zusammenfassung/analysis/AnalysisZF.log new file mode 100644 index 0000000..4b6b813 --- /dev/null +++ b/zusammenfassung/analysis/AnalysisZF.log @@ -0,0 +1,1513 @@ +This is pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024) (preloaded format=pdflatex 2024.3.21) 2 OCT 2024 13:28 +entering extended mode + restricted \write18 enabled. + %&-line parsing enabled. +**AnalysisZF.tex +(./AnalysisZF.tex +LaTeX2e <2023-11-01> patch level 1 +L3 programming layer <2024-02-20> +(/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrartcl.cls +Document Class: scrartcl 2023/07/07 v3.41 KOMA-Script document class (article) +(/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrkbase.sty +Package: scrkbase 2023/07/07 v3.41 KOMA-Script package (KOMA-Script-dependent basics and keyval usage) + (/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrbase.sty +Package: scrbase 2023/07/07 v3.41 KOMA-Script package (KOMA-Script-independent basics and keyval usage) + (/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile.sty +Package: scrlfile 2023/07/07 v3.41 KOMA-Script package (file load hooks) + (/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty +Package: scrlfile-hook 2023/07/07 v3.41 KOMA-Script package (using LaTeX hooks) + (/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/scrlogo.sty +Package: scrlogo 2023/07/07 v3.41 KOMA-Script package (logo) +))) (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/keyval.sty +Package: keyval 2022/05/29 v1.15 key=value parser (DPC) +\KV@toks@=\toks17 +) +Applying: [2021/05/01] Usage of raw or classic option list on input line 252. +Already applied: [0000/00/00] Usage of raw or classic option list on input line 368. +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/tocbasic.sty +Package: tocbasic 2023/07/07 v3.41 KOMA-Script package (handling toc-files) +\scr@dte@tocline@numberwidth=\skip48 +\scr@dte@tocline@numbox=\box51 +) +Package tocbasic Info: omitting babel extension for `toc' +(tocbasic) because of feature `nobabel' available +(tocbasic) for `toc' on input line 133. +Class scrartcl Info: File `size8.clo' used to setup font sizes on input line 2441. + (/usr/local/texlive/2024/texmf-dist/tex/latex/extsizes/size8.clo +File: size8.clo 1999/11/11 v1.4a NON-Standard LaTeX file (size option) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/koma-script/typearea.sty +Package: typearea 2023/07/07 v3.41 KOMA-Script package (type area) +\ta@bcor=\skip49 +\ta@div=\count188 +Package typearea Info: You've used standard option `a4paper'. +(typearea) This is correct! +(typearea) Internally I'm using `paper=a4'. +(typearea) If you'd like to set the option with \KOMAoptions, +(typearea) you'd have to use `paper=a4' there +(typearea) instead of `a4paper', too. +Package typearea Info: You've used standard option `landscape'. +(typearea) This is correct! +(typearea) Internally I'm using `paper=landscape'. +(typearea) If you'd like to set the option with \KOMAoptions, +(typearea) you'd have to use `paper=landscape' there +(typearea) instead of `landscape', too. +\ta@hblk=\skip50 +\ta@vblk=\skip51 +\ta@temp=\skip52 +\footheight=\skip53 +Package typearea Info: With paper sizes other than (almost) `A4' predefined +(typearea) DIV values do not exist. Using DIV calculation for good +(typearea) line width (unless using `version=3.24` or prior). + +DIV calculation for typearea with good linewidth. +Package typearea Info: Maybe no optimal type area settings! +(typearea) The detected line width is about 24% +(typearea) smaller than the heuristically estimated maximum +(typearea) limit of typographical good line width. +(typearea) You could e.g. increase DIV +(typearea) or change the papersize. + +Package typearea Warning: Very low DIV value! +(typearea) DIV values less than 6 result in textwidth/-height +(typearea) smaller than total marginwidth/-height. +(typearea) You should e.g. increase DIV, increase fontsize or +(typearea) change papersize. + +Package typearea Info: These are the values describing the layout: +(typearea) DIV = 4 +(typearea) BCOR = 0.0pt +(typearea) \paperwidth = 845.04694pt +(typearea) \textwidth = 211.26173pt +(typearea) DIV departure = 24% +(typearea) \evensidemargin = 244.6226pt +(typearea) \oddsidemargin = 244.6226pt +(typearea) \paperheight = 597.50793pt +(typearea) \textheight = 150.5pt +(typearea) \topmargin = 50.982pt +(typearea) \headheight = 11.875pt +(typearea) \headsep = 14.25pt +(typearea) \topskip = 8.0pt +(typearea) \footskip = 33.25pt +(typearea) \baselineskip = 9.5pt +(typearea) on input line 1799. +) +\c@part=\count189 +\c@section=\count190 +\c@subsection=\count191 +\c@subsubsection=\count192 +\c@paragraph=\count193 +\c@subparagraph=\count194 +\scr@dte@section@maxnumwidth=\skip54 +Class scrartcl Info: using compatibility default `runin=bysign' +(scrartcl) for `\section on input line 5082. +Class scrartcl Info: using compatibility default `afterindent=bysign' +(scrartcl) for `\section on input line 5082. +\scr@dte@part@maxnumwidth=\skip55 +Class scrartcl Info: using compatibility default `afterindent=false' +(scrartcl) for `\part on input line 5090. +\scr@dte@subsection@maxnumwidth=\skip56 +Class scrartcl Info: using compatibility default `runin=bysign' +(scrartcl) for `\subsection on input line 5100. +Class scrartcl Info: using compatibility default `afterindent=bysign' +(scrartcl) for `\subsection on input line 5100. +\scr@dte@subsubsection@maxnumwidth=\skip57 +Class scrartcl Info: using compatibility default `runin=bysign' +(scrartcl) for `\subsubsection on input line 5110. +Class scrartcl Info: using compatibility default `afterindent=bysign' +(scrartcl) for `\subsubsection on input line 5110. +\scr@dte@paragraph@maxnumwidth=\skip58 +Class scrartcl Info: using compatibility default `runin=bysign' +(scrartcl) for `\paragraph on input line 5121. +Class scrartcl Info: using compatibility default `afterindent=bysign' +(scrartcl) for `\paragraph on input line 5121. +\scr@dte@subparagraph@maxnumwidth=\skip59 +Class scrartcl Info: using compatibility default `runin=bysign' +(scrartcl) for `\subparagraph on input line 5131. +Class scrartcl Info: using compatibility default `afterindent=bysign' +(scrartcl) for `\subparagraph on input line 5131. +\abovecaptionskip=\skip60 +\belowcaptionskip=\skip61 +\c@pti@nb@sid@b@x=\box52 +Package tocbasic Info: omitting babel extension for `lof' +(tocbasic) because of feature `nobabel' available +(tocbasic) for `lof' on input line 6309. +\scr@dte@figure@maxnumwidth=\skip62 +\c@figure=\count195 +Package tocbasic Info: omitting babel extension for `lot' +(tocbasic) because of feature `nobabel' available +(tocbasic) for `lot' on input line 6325. +\scr@dte@table@maxnumwidth=\skip63 +\c@table=\count196 +Class scrartcl Info: Redefining `\numberline' on input line 6495. +\bibindent=\dimen140 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/babel/babel.sty +Package: babel 2024/02/07 v24.2 The Babel package +\babel@savecnt=\count197 +\U@D=\dimen141 +\l@unhyphenated=\language89 + (/usr/local/texlive/2024/texmf-dist/tex/generic/babel/txtbabel.def) +\bbl@readstream=\read2 +\bbl@dirlevel=\count198 + (/usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/german.ldf +Language: german 2024/01/19 v2.14 German support for babel (pre-1996 orthography) + (/usr/local/texlive/2024/texmf-dist/tex/generic/babel-german/germanb.ldf +Language: germanb 2024/01/19 v2.14 German support for babel (pre-1996 orthography) +Package babel Info: Making " an active character on input line 139. +))) (/usr/local/texlive/2024/texmf-dist/tex/generic/babel/locale/de/babel-german.tex +Package babel Info: Importing font and identification data for german +(babel) from babel-de-1901.ini. Reported on input line 25. +) (/usr/local/texlive/2024/texmf-dist/tex/latex/geometry/geometry.sty +Package: geometry 2020/01/02 v5.9 Page Geometry + (/usr/local/texlive/2024/texmf-dist/tex/generic/iftex/ifvtex.sty +Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. + (/usr/local/texlive/2024/texmf-dist/tex/generic/iftex/iftex.sty +Package: iftex 2022/02/03 v1.0f TeX engine tests +)) +\Gm@cnth=\count199 +\Gm@cntv=\count266 +\c@Gm@tempcnt=\count267 +\Gm@bindingoffset=\dimen142 +\Gm@wd@mp=\dimen143 +\Gm@odd@mp=\dimen144 +\Gm@even@mp=\dimen145 +\Gm@layoutwidth=\dimen146 +\Gm@layoutheight=\dimen147 +\Gm@layouthoffset=\dimen148 +\Gm@layoutvoffset=\dimen149 +\Gm@dimlist=\toks18 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/xcolor/xcolor.sty +Package: xcolor 2023/11/15 v3.01 LaTeX color extensions (UK) + (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/color.cfg +File: color.cfg 2016/01/02 v1.6 sample color configuration +) +Package xcolor Info: Driver file: pdftex.def on input line 274. + (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics-def/pdftex.def +File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex +) (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/mathcolor.ltx) +Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1350. +Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1354. +Package xcolor Info: Model `RGB' extended on input line 1366. +Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1368. +Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1369. +Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1370. +Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1371. +Package xcolor Info: Model `Gray' substituted by `gray' on input line 1372. +Package xcolor Info: Model `wave' substituted by `hsb' on input line 1373. +) (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/dvipsnam.def +File: dvipsnam.def 2016/06/17 v3.0m Driver-dependent file (DPC,SPQR) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hyperref.sty +Package: hyperref 2024-01-20 v7.01h Hypertext links for LaTeX + (/usr/local/texlive/2024/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty +Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty +Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pdfescape/pdfescape.sty +Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) + (/usr/local/texlive/2024/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty +Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty +Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO) + (/usr/local/texlive/2024/texmf-dist/tex/generic/infwarerr/infwarerr.sty +Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) +) +Package pdftexcmds Info: \pdf@primitive is available. +Package pdftexcmds Info: \pdf@ifprimitive is available. +Package pdftexcmds Info: \pdfdraftmode found. +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/hycolor/hycolor.sty +Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/auxhook/auxhook.sty +Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/nameref.sty +Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section + (/usr/local/texlive/2024/texmf-dist/tex/latex/refcount/refcount.sty +Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty +Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) + (/usr/local/texlive/2024/texmf-dist/tex/latex/kvoptions/kvoptions.sty +Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO) +)) +\c@section@level=\count268 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/etoolbox/etoolbox.sty +Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) +\etb@tempcnta=\count269 +) +\@linkdim=\dimen150 +\Hy@linkcounter=\count270 +\Hy@pagecounter=\count271 + (/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/pd1enc.def +File: pd1enc.def 2024-01-20 v7.01h Hyperref: PDFDocEncoding definition (HO) +Now handling font encoding PD1 ... +... no UTF-8 mapping file for font encoding PD1 +) +(/usr/local/texlive/2024/texmf-dist/tex/generic/intcalc/intcalc.sty +Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) +) +\Hy@SavedSpaceFactor=\count272 + (/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/puenc.def +File: puenc.def 2024-01-20 v7.01h Hyperref: PDF Unicode definition (HO) +Now handling font encoding PU ... +... no UTF-8 mapping file for font encoding PU +) +Package hyperref Info: Hyper figures OFF on input line 4179. +Package hyperref Info: Link nesting OFF on input line 4184. +Package hyperref Info: Hyper index ON on input line 4187. +Package hyperref Info: Plain pages OFF on input line 4194. +Package hyperref Info: Backreferencing OFF on input line 4199. +Package hyperref Info: Implicit mode ON; LaTeX internals redefined. +Package hyperref Info: Bookmarks ON on input line 4446. +\c@Hy@tempcnt=\count273 + (/usr/local/texlive/2024/texmf-dist/tex/latex/url/url.sty +\Urlmuskip=\muskip16 +Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. +) +LaTeX Info: Redefining \url on input line 4784. +\XeTeXLinkMargin=\dimen151 + (/usr/local/texlive/2024/texmf-dist/tex/generic/bitset/bitset.sty +Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) + (/usr/local/texlive/2024/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty +Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO) +)) +\Fld@menulength=\count274 +\Field@Width=\dimen152 +\Fld@charsize=\dimen153 +Package hyperref Info: Hyper figures OFF on input line 6063. +Package hyperref Info: Link nesting OFF on input line 6068. +Package hyperref Info: Hyper index ON on input line 6071. +Package hyperref Info: backreferencing OFF on input line 6078. +Package hyperref Info: Link coloring OFF on input line 6083. +Package hyperref Info: Link coloring with OCG OFF on input line 6088. +Package hyperref Info: PDF/A mode OFF on input line 6093. + (/usr/local/texlive/2024/texmf-dist/tex/latex/base/atbegshi-ltx.sty +Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi +package with kernel methods +) +\Hy@abspage=\count275 +\c@Item=\count276 +\c@Hfootnote=\count277 +) +Package hyperref Info: Driver (autodetected): hpdftex. + (/usr/local/texlive/2024/texmf-dist/tex/latex/hyperref/hpdftex.def +File: hpdftex.def 2024-01-20 v7.01h Hyperref driver for pdfTeX + (/usr/local/texlive/2024/texmf-dist/tex/latex/base/atveryend-ltx.sty +Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend package +with kernel methods +) +\Fld@listcount=\count278 +\c@bookmark@seq@number=\count279 + (/usr/local/texlive/2024/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty +Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO) + (/usr/local/texlive/2024/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty +Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) +) +Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 285. +) +\Hy@SectionHShift=\skip64 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amscd.sty +Package: amscd 2017/04/14 v2.1 AMS Commutative Diagrams + (/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsgen.sty +File: amsgen.sty 1999/11/30 v2.0 generic functions +\@emptytoks=\toks19 +\ex@=\dimen154 +) +\athelp@=\toks20 +\minaw@=\dimen155 +\bigaw@=\dimen156 +\minCDarrowwidth=\dimen157 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsmath.sty +Package: amsmath 2023/05/13 v2.17o AMS math features +\@mathmargin=\skip65 + +For additional information on amsmath, use the `?' option. +(/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amstext.sty +Package: amstext 2021/08/26 v2.01 AMS text +) (/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsbsy.sty +Package: amsbsy 1999/11/29 v1.2d Bold Symbols +\pmbraise@=\dimen158 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/amsmath/amsopn.sty +Package: amsopn 2022/04/08 v2.04 operator names +) +\inf@bad=\count280 +LaTeX Info: Redefining \frac on input line 234. +\uproot@=\count281 +\leftroot@=\count282 +LaTeX Info: Redefining \overline on input line 399. +LaTeX Info: Redefining \colon on input line 410. +\classnum@=\count283 +\DOTSCASE@=\count284 +LaTeX Info: Redefining \ldots on input line 496. +LaTeX Info: Redefining \dots on input line 499. +LaTeX Info: Redefining \cdots on input line 620. +\Mathstrutbox@=\box53 +\strutbox@=\box54 +LaTeX Info: Redefining \big on input line 722. +LaTeX Info: Redefining \Big on input line 723. +LaTeX Info: Redefining \bigg on input line 724. +LaTeX Info: Redefining \Bigg on input line 725. +\big@size=\dimen159 +LaTeX Font Info: Redeclaring font encoding OML on input line 743. +LaTeX Font Info: Redeclaring font encoding OMS on input line 744. +\macc@depth=\count285 +LaTeX Info: Redefining \bmod on input line 905. +LaTeX Info: Redefining \pmod on input line 910. +LaTeX Info: Redefining \smash on input line 940. +LaTeX Info: Redefining \relbar on input line 970. +LaTeX Info: Redefining \Relbar on input line 971. +\c@MaxMatrixCols=\count286 +\dotsspace@=\muskip17 +\c@parentequation=\count287 +\dspbrk@lvl=\count288 +\tag@help=\toks21 +\row@=\count289 +\column@=\count290 +\maxfields@=\count291 +\andhelp@=\toks22 +\eqnshift@=\dimen160 +\alignsep@=\dimen161 +\tagshift@=\dimen162 +\tagwidth@=\dimen163 +\totwidth@=\dimen164 +\lineht@=\dimen165 +\@envbody=\toks23 +\multlinegap=\skip66 +\multlinetaggap=\skip67 +\mathdisplay@stack=\toks24 +LaTeX Info: Redefining \[ on input line 2953. +LaTeX Info: Redefining \] on input line 2954. +) (/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amssymb.sty +Package: amssymb 2013/01/14 v3.01 AMS font symbols + (/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/amsfonts.sty +Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support +\symAMSa=\mathgroup4 +\symAMSb=\mathgroup5 +LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. +LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' +(Font) U/euf/m/n --> U/euf/b/n on input line 106. +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/blindtext/blindtext.sty +Package: blindtext 2012/01/06 V2.0 blindtext-Package + (/usr/local/texlive/2024/texmf-dist/tex/latex/tools/xspace.sty +Package: xspace 2014/10/28 v1.13 Space after command names (DPC,MH) +) +\c@blindtext=\count292 +\c@Blindtext=\count293 +\c@blind@countparstart=\count294 +\blind@countxx=\count295 +\blindtext@numBlindtext=\count296 +\blind@countyy=\count297 +\c@blindlist=\count298 +\c@blindlistlevel=\count299 +\c@blindlist@level=\count300 +\blind@listitem=\count301 +\c@blind@listcount=\count302 +\c@blind@levelcount=\count303 +\blind@mathformula=\count304 +\blind@Mathformula=\count305 +\c@blind@randomcount=\count306 +\c@blind@randommax=\count307 +\c@blind@pangramcount=\count308 +\c@blind@pangrammax=\count309 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/empheq.sty +Package: empheq 2017/03/31 v2.15 Emphasizing equations + (/usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mhsetup.sty +Package: mhsetup 2021/03/18 v1.4 programming setup (MH) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/mathtools/mathtools.sty +Package: mathtools 2024/03/11 v1.30 mathematical typesetting tools + (/usr/local/texlive/2024/texmf-dist/tex/latex/tools/calc.sty +Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ) +\calc@Acount=\count310 +\calc@Bcount=\count311 +\calc@Adimen=\dimen166 +\calc@Bdimen=\dimen167 +\calc@Askip=\skip68 +\calc@Bskip=\skip69 +LaTeX Info: Redefining \setlength on input line 80. +LaTeX Info: Redefining \addtolength on input line 81. +\calc@Ccount=\count312 +\calc@Cskip=\skip70 +) +\g_MT_multlinerow_int=\count313 +\l_MT_multwidth_dim=\dimen168 +\origjot=\skip71 +\l_MT_shortvdotswithinadjustabove_dim=\dimen169 +\l_MT_shortvdotswithinadjustbelow_dim=\dimen170 +\l_MT_above_intertext_sep=\dimen171 +\l_MT_below_intertext_sep=\dimen172 +\l_MT_above_shortintertext_sep=\dimen173 +\l_MT_below_shortintertext_sep=\dimen174 +\xmathstrut@box=\box55 +\xmathstrut@dim=\dimen175 +) +\l_EQ_equationtype_int=\count314 +\l_EQ_alignmentmode_int=\count315 +\l_EQ_totalwidth_dim=\dimen176 +\l_EQ_displaywidth_dim=\dimen177 +\l_EQ_temp_linewidth_dim=\dimen178 +\l_EQ_linewidth_dim=\dimen179 +\EmphEqdelimitershortfall=\dimen180 +\EmphEqdelimiterfactor=\count316 +\g_EQ_toptag_height_dim=\dimen181 +\g_EQ_bottomtag_depth_dim=\dimen182 +\g_EQ_toprow_height_dim=\dimen183 +\g_EQ_bottomrow_depth_dim=\dimen184 +\g_EQ_widesttag_dim=\dimen185 +\EQ_mathdisplay_box=\box56 +\EQ_tag_box=\box57 +\g_EQ_temprow_int=\count317 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/enumitem/enumitem.sty +Package: enumitem 2019/06/20 v3.9 Customized lists +\labelindent=\skip72 +\enit@outerparindent=\dimen186 +\enit@toks=\toks25 +\enit@inbox=\box58 +\enit@count@id=\count318 +\enitdp@description=\count319 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tools/multicol.sty +Package: multicol 2023/03/30 v1.9f multicolumn formatting (FMi) +\c@tracingmulticols=\count320 +\mult@box=\box59 +\multicol@leftmargin=\dimen187 +\c@unbalance=\count321 +\c@collectmore=\count322 +\doublecol@number=\count323 +\multicoltolerance=\count324 +\multicolpretolerance=\count325 +\full@width=\dimen188 +\page@free=\dimen189 +\premulticols=\dimen190 +\postmulticols=\dimen191 +\multicolsep=\skip73 +\multicolbaselineskip=\skip74 +\partial@page=\box60 +\last@line=\box61 +\mc@boxedresult=\box62 +\maxbalancingoverflow=\dimen192 +\mult@rightbox=\box63 +\mult@grightbox=\box64 +\mult@firstbox=\box65 +\mult@gfirstbox=\box66 +\@tempa=\box67 +\@tempa=\box68 +\@tempa=\box69 +\@tempa=\box70 +\@tempa=\box71 +\@tempa=\box72 +\@tempa=\box73 +\@tempa=\box74 +\@tempa=\box75 +\@tempa=\box76 +\@tempa=\box77 +\@tempa=\box78 +\@tempa=\box79 +\@tempa=\box80 +\@tempa=\box81 +\@tempa=\box82 +\@tempa=\box83 +\@tempa=\box84 +\@tempa=\box85 +\@tempa=\box86 +\@tempa=\box87 +\@tempa=\box88 +\@tempa=\box89 +\@tempa=\box90 +\@tempa=\box91 +\@tempa=\box92 +\@tempa=\box93 +\@tempa=\box94 +\@tempa=\box95 +\@tempa=\box96 +\@tempa=\box97 +\@tempa=\box98 +\@tempa=\box99 +\@tempa=\box100 +\@tempa=\box101 +\@tempa=\box102 +\c@minrows=\count326 +\c@columnbadness=\count327 +\c@finalcolumnbadness=\count328 +\last@try=\dimen193 +\multicolovershoot=\dimen194 +\multicolundershoot=\dimen195 +\mult@nat@firstbox=\box103 +\colbreak@box=\box104 +\mc@col@check@num=\count329 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphicx.sty +Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) + (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/graphics.sty +Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR) + (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics/trig.sty +Package: trig 2021/08/11 v1.11 sin cos tan (DPC) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/graphics-cfg/graphics.cfg +File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration +) +Package graphics Info: Driver file: pdftex.def on input line 107. +) +\Gin@req@height=\dimen196 +\Gin@req@width=\dimen197 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex +\pgfutil@everybye=\toks26 +\pgfutil@tempdima=\dimen198 +\pgfutil@tempdimb=\dimen199 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def +\pgfutil@abb=\box105 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/pgf.revision.tex) +Package: pgfrcs 2023-01-15 v3.1.10 (3.1.10) +)) +Package: pgf 2023-01-15 v3.1.10 (3.1.10) + (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex +Package: pgfsys 2023-01-15 v3.1.10 (3.1.10) + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex +\pgfkeys@pathtoks=\toks27 +\pgfkeys@temptoks=\toks28 + +(/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfiltered.code.tex +\pgfkeys@tmptoks=\toks29 +)) +\pgf@x=\dimen256 +\pgf@y=\dimen257 +\pgf@xa=\dimen258 +\pgf@ya=\dimen259 +\pgf@xb=\dimen260 +\pgf@yb=\dimen261 +\pgf@xc=\dimen262 +\pgf@yc=\dimen263 +\pgf@xd=\dimen264 +\pgf@yd=\dimen265 +\w@pgf@writea=\write3 +\r@pgf@reada=\read3 +\c@pgf@counta=\count330 +\c@pgf@countb=\count331 +\c@pgf@countc=\count332 +\c@pgf@countd=\count333 +\t@pgf@toka=\toks30 +\t@pgf@tokb=\toks31 +\t@pgf@tokc=\toks32 +\pgf@sys@id@count=\count334 + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg +File: pgf.cfg 2023-01-15 v3.1.10 (3.1.10) +) +Driver file for pgf: pgfsys-pdftex.def + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def +File: pgfsys-pdftex.def 2023-01-15 v3.1.10 (3.1.10) + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def +File: pgfsys-common-pdf.def 2023-01-15 v3.1.10 (3.1.10) +))) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex +File: pgfsyssoftpath.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgfsyssoftpath@smallbuffer@items=\count335 +\pgfsyssoftpath@bigbuffer@items=\count336 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex +File: pgfsysprotocol.code.tex 2023-01-15 v3.1.10 (3.1.10) +)) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex +Package: pgfcore 2023-01-15 v3.1.10 (3.1.10) + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex +\pgfmath@dimen=\dimen266 +\pgfmath@count=\count337 +\pgfmath@box=\box106 +\pgfmath@toks=\toks33 +\pgfmath@stack@operand=\toks34 +\pgfmath@stack@operation=\toks35 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex +\c@pgfmathroundto@lastzeros=\count338 +)) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex +File: pgfcorepoints.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgf@picminx=\dimen267 +\pgf@picmaxx=\dimen268 +\pgf@picminy=\dimen269 +\pgf@picmaxy=\dimen270 +\pgf@pathminx=\dimen271 +\pgf@pathmaxx=\dimen272 +\pgf@pathminy=\dimen273 +\pgf@pathmaxy=\dimen274 +\pgf@xx=\dimen275 +\pgf@xy=\dimen276 +\pgf@yx=\dimen277 +\pgf@yy=\dimen278 +\pgf@zx=\dimen279 +\pgf@zy=\dimen280 +) +(/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex +File: pgfcorepathconstruct.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgf@path@lastx=\dimen281 +\pgf@path@lasty=\dimen282 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex +File: pgfcorepathusage.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgf@shorten@end@additional=\dimen283 +\pgf@shorten@start@additional=\dimen284 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex +File: pgfcorescopes.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgfpic=\box107 +\pgf@hbox=\box108 +\pgf@layerbox@main=\box109 +\pgf@picture@serial@count=\count339 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex +File: pgfcoregraphicstate.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgflinewidth=\dimen285 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex +File: pgfcoretransformations.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgf@pt@x=\dimen286 +\pgf@pt@y=\dimen287 +\pgf@pt@temp=\dimen288 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex +File: pgfcorequick.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex +File: pgfcoreobjects.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex +File: pgfcorepathprocessing.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex +File: pgfcorearrows.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgfarrowsep=\dimen289 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex +File: pgfcoreshade.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgf@max=\dimen290 +\pgf@sys@shading@range@num=\count340 +\pgf@shadingcount=\count341 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex +File: pgfcoreimage.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex +File: pgfcoreexternal.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgfexternal@startupbox=\box110 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex +File: pgfcorelayers.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex +File: pgfcoretransparency.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex +File: pgfcorepatterns.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex +File: pgfcorerdf.code.tex 2023-01-15 v3.1.10 (3.1.10) +))) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex +File: pgfmoduleshapes.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgfnodeparttextbox=\box111 +) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex +File: pgfmoduleplot.code.tex 2023-01-15 v3.1.10 (3.1.10) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty +Package: pgfcomp-version-0-65 2023-01-15 v3.1.10 (3.1.10) +\pgf@nodesepstart=\dimen291 +\pgf@nodesepend=\dimen292 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty +Package: pgfcomp-version-1-18 2023-01-15 v3.1.10 (3.1.10) +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgffor.sty (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty +(/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex)) (/usr/local/texlive/2024/texmf-dist/tex/latex/pgf/math/pgfmath.sty (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex)) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex +Package: pgffor 2023-01-15 v3.1.10 (3.1.10) +\pgffor@iter=\dimen293 +\pgffor@skip=\dimen294 +\pgffor@stack=\toks36 +\pgffor@toks=\toks37 +)) (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex +Package: tikz 2023-01-15 v3.1.10 (3.1.10) + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex +File: pgflibraryplothandlers.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgf@plot@mark@count=\count342 +\pgfplotmarksize=\dimen295 +) +\tikz@lastx=\dimen296 +\tikz@lasty=\dimen297 +\tikz@lastxsaved=\dimen298 +\tikz@lastysaved=\dimen299 +\tikz@lastmovetox=\dimen300 +\tikz@lastmovetoy=\dimen301 +\tikzleveldistance=\dimen302 +\tikzsiblingdistance=\dimen303 +\tikz@figbox=\box112 +\tikz@figbox@bg=\box113 +\tikz@tempbox=\box114 +\tikz@tempbox@bg=\box115 +\tikztreelevel=\count343 +\tikznumberofchildren=\count344 +\tikznumberofcurrentchild=\count345 +\tikz@fig@count=\count346 + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex +File: pgfmodulematrix.code.tex 2023-01-15 v3.1.10 (3.1.10) +\pgfmatrixcurrentrow=\count347 +\pgfmatrixcurrentcolumn=\count348 +\pgf@matrix@numberofcolumns=\count349 +) +\tikz@expandcount=\count350 + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex +File: tikzlibrarytopaths.code.tex 2023-01-15 v3.1.10 (3.1.10) +))) (/usr/local/texlive/2024/texmf-dist/tex/latex/tools/array.sty +Package: array 2023/10/16 v2.5g Tabular extension package (FMi) +\col@sep=\dimen304 +\ar@mcellbox=\box116 +\extrarowheight=\dimen305 +\NC@list=\toks38 +\extratabsurround=\skip75 +\backup@length=\skip76 +\ar@cellbox=\box117 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/multirow/multirow.sty +Package: multirow 2021/03/15 v2.8 Span multiple rows of a table +\multirow@colwidth=\skip77 +\multirow@cntb=\count351 +\multirow@dima=\skip78 +\bigstrutjot=\dimen306 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/booktabs/booktabs.sty +Package: booktabs 2020/01/12 v1.61803398 Publication quality tables +\heavyrulewidth=\dimen307 +\lightrulewidth=\dimen308 +\cmidrulewidth=\dimen309 +\belowrulesep=\dimen310 +\belowbottomsep=\dimen311 +\aboverulesep=\dimen312 +\abovetopsep=\dimen313 +\cmidrulesep=\dimen314 +\cmidrulekern=\dimen315 +\defaultaddspace=\dimen316 +\@cmidla=\count352 +\@cmidlb=\count353 +\@aboverulesep=\dimen317 +\@belowrulesep=\dimen318 +\@thisruleclass=\count354 +\@lastruleclass=\count355 +\@thisrulewidth=\dimen319 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty +Package: tcolorbox 2024/01/10 version 6.2.0 text color boxes + (/usr/local/texlive/2024/texmf-dist/tex/latex/tools/verbatim.sty +Package: verbatim 2023-11-06 v1.5v LaTeX2e package for verbatim enhancements +\every@verbatim=\toks39 +\verbatim@line=\toks40 +\verbatim@in@stream=\read4 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/environ/environ.sty +Package: environ 2014/05/04 v0.3 A new way to define environments + (/usr/local/texlive/2024/texmf-dist/tex/latex/trimspaces/trimspaces.sty +Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list +)) +\tcb@titlebox=\box118 +\tcb@upperbox=\box119 +\tcb@lowerbox=\box120 +\tcb@phantombox=\box121 +\c@tcbbreakpart=\count356 +\c@tcblayer=\count357 +\c@tcolorbox@number=\count358 +\l__tcobox_tmpa_box=\box122 +\l__tcobox_tmpa_dim=\dimen320 +\tcb@temp=\box123 +\tcb@temp=\box124 +\tcb@temp=\box125 +\tcb@temp=\box126 + (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbraster.code.tex +Library (tcolorbox): 'tcbraster.code.tex' version '6.2.0' +\c@tcbrastercolumn=\count359 +\c@tcbrasterrow=\count360 +\c@tcbrasternum=\count361 +\c@tcbraster=\count362 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex +Library (tcolorbox): 'tcbskins.code.tex' version '6.2.0' +(/usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty +Package: tikzfill.image 2023/08/08 v1.0.1 Image filling library for TikZ + (/usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty +Package: tikzfill-common 2023/08/08 v1.0.1 Auxiliary code for tikzfill +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.code.tex +File: tikzlibraryfill.image.code.tex 2023/08/08 v1.0.1 Image filling library +\l__tikzfill_img_box=\box127 +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex +Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '6.2.0' +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex +Library (tcolorbox): 'tcbbreakable.code.tex' version '6.2.0' +(/usr/local/texlive/2024/texmf-dist/tex/latex/pdfcol/pdfcol.sty +Package: pdfcol 2022-09-21 v1.7 Handle new color stacks for pdfTeX (HO) +) +Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. +\tcb@testbox=\box128 +\tcb@totalupperbox=\box129 +\tcb@totallowerbox=\box130 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbhooks.code.tex +Library (tcolorbox): 'tcbhooks.code.tex' version '6.2.0' +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbtheorems.code.tex +Library (tcolorbox): 'tcbtheorems.code.tex' version '6.2.0' +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbfitting.code.tex +Library (tcolorbox): 'tcbfitting.code.tex' version '6.2.0' +\tcbfitdim=\dimen321 +\tcb@lowerfitdim=\dimen322 +\tcb@upperfitdim=\dimen323 +\tcb@cur@hbadness=\count363 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistingsutf8.code.tex +Library (tcolorbox): 'tcblistingsutf8.code.tex' version '6.2.0' +(/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistings.code.tex +Library (tcolorbox): 'tcblistings.code.tex' version '6.2.0' +(/usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.sty +\lst@mode=\count364 +\lst@gtempboxa=\box131 +\lst@token=\toks41 +\lst@length=\count365 +\lst@currlwidth=\dimen324 +\lst@column=\count366 +\lst@pos=\count367 +\lst@lostspace=\dimen325 +\lst@width=\dimen326 +\lst@newlines=\count368 +\lst@lineno=\count369 +\lst@maxwidth=\dimen327 + (/usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstpatch.sty +File: lstpatch.sty 2024/02/21 1.10 (Carsten Heinz) +) (/usr/local/texlive/2024/texmf-dist/tex/latex/listings/lstmisc.sty +File: lstmisc.sty 2024/02/21 1.10 (Carsten Heinz) +\c@lstnumber=\count370 +\lst@skipnumbers=\count371 +\lst@framebox=\box132 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/listings/listings.cfg +File: listings.cfg 2024/02/21 1.10 listings configuration +)) +Package: listings 2024/02/21 1.10 (Carsten Heinz) + (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcblistingscore.code.tex +Library (tcolorbox): 'tcblistingscore.code.tex' version '6.2.0' +(/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbprocessing.code.tex +Library (tcolorbox): 'tcbprocessing.code.tex' version '6.2.0' +) +\c@tcblisting=\count372 +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/listingsutf8/listingsutf8.sty +Package: listingsutf8 2019-12-10 v1.5 Allow UTF-8 in listings input (HO) + (/usr/local/texlive/2024/texmf-dist/tex/generic/stringenc/stringenc.sty +Package: stringenc 2019/11/29 v1.12 Convert strings between diff. encodings (HO) +))) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbexternal.code.tex +Library (tcolorbox): 'tcbexternal.code.tex' version '6.2.0' +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbmagazine.code.tex +Library (tcolorbox): 'tcbmagazine.code.tex' version '6.2.0' +) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbvignette.code.tex +Library (tcolorbox): 'tcbvignette.code.tex' version '6.2.0' +(/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex +File: tikzlibraryfadings.code.tex 2023-01-15 v3.1.10 (3.1.10) + (/usr/local/texlive/2024/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex +File: pgflibraryfadings.code.tex 2023-01-15 v3.1.10 (3.1.10) +))) (/usr/local/texlive/2024/texmf-dist/tex/latex/tcolorbox/tcbposter.code.tex +Library (tcolorbox): 'tcbposter.code.tex' version '6.2.0' +)) (/usr/local/texlive/2024/texmf-dist/tex/latex/tools/afterpage.sty +Package: afterpage 2023/07/04 v1.08 After-Page Package (DPC) +\AP@output=\toks42 +\AP@partial=\box133 +\AP@footins=\box134 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def +File: l3backend-pdftex.def 2024-02-20 L3 backend support: PDF output (pdfTeX) +\l__color_backend_stack_int=\count373 +\l__pdf_internal_box=\box135 +) (./AnalysisZF.aux) +\openout1 = `AnalysisZF.aux'. + +LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. +LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 104. +LaTeX Font Info: ... okay on input line 104. + +*geometry* driver: auto-detecting +*geometry* detected driver: pdftex +*geometry* verbose mode - [ preamble ] result: +* driver: pdftex +* paper: a4paper +* layout: +* layoutoffset:(h,v)=(0.0pt,0.0pt) +* modes: landscape +* h-part:(L,W,R)=(14.22636pt, 816.59412pt, 14.22636pt) +* v-part:(T,H,B)=(14.22636pt, 569.05515pt, 14.22636pt) +* \paperwidth=845.04684pt +* \paperheight=597.50787pt +* \textwidth=816.59412pt +* \textheight=569.05515pt +* \oddsidemargin=-58.04362pt +* \evensidemargin=-58.04362pt +* \topmargin=-84.16862pt +* \headheight=11.875pt +* \headsep=14.25pt +* \topskip=8.0pt +* \footskip=33.25pt +* \marginparwidth=211.26173pt +* \marginparsep=12.8401pt +* \columnsep=10.0pt +* \skip\footins=7.0pt plus 4.0pt minus 2.0pt +* \hoffset=0.0pt +* \voffset=0.0pt +* \mag=1000 +* \@twocolumnfalse +* \@twosidefalse +* \@mparswitchfalse +* \@reversemarginfalse +* (1in=72.27pt=25.4mm, 1cm=28.453pt) + +(/usr/local/texlive/2024/texmf-dist/tex/context/base/mkii/supp-pdf.mkii +[Loading MPS to PDF converter (version 2006.09.02).] +\scratchcounter=\count374 +\scratchdimen=\dimen328 +\scratchbox=\box136 +\nofMPsegments=\count375 +\nofMParguments=\count376 +\everyMPshowfont=\toks43 +\MPscratchCnt=\count377 +\MPscratchDim=\dimen329 +\MPnumerator=\count378 +\makeMPintoPDFobject=\count379 +\everyMPtoPDFconversion=\toks44 +) (/usr/local/texlive/2024/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty +Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf +Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 485. + (/usr/local/texlive/2024/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg +File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Live +)) +Package hyperref Info: Link coloring OFF on input line 104. + (./AnalysisZF.out) (./AnalysisZF.out) +\@outlinefile=\write4 +\openout4 = `AnalysisZF.out'. + +Class scrartcl Info: loading recommended package `bookmark'. +(scrartcl) Using `bookmark' together with `hyperref' is recommended, +(scrartcl) because of handling of possible bookmark level gaps. +(scrartcl) You can avoid loading `bookmark' with KOMA-Script option +(scrartcl) `bookmarkpackage=false' before \begin{document} and +(scrartcl) you can avoid this message adding: +(scrartcl) \usepackage{bookmark} +(scrartcl) before \begin{document} on input line 104. + (/usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bookmark.sty +Package: bookmark 2023-12-10 v1.31 PDF bookmarks (HO) + (/usr/local/texlive/2024/texmf-dist/tex/latex/bookmark/bkm-pdftex.def +File: bkm-pdftex.def 2023-12-10 v1.31 bookmark driver for pdfTeX and luaTeX (HO) +\BKM@id=\count380 +)) +\c@lstlisting=\count381 +Package tocbasic Info: setting babel extension for `lol' on input line 104. +\scr@dte@lstlisting@maxnumwidth=\skip79 + (/usr/local/texlive/2024/texmf-dist/tex/latex/base/inputenc.sty +Package: inputenc 2021/02/14 v1.3d Input encoding file +\inpenc@prehook=\toks45 +\inpenc@posthook=\toks46 +) +LaTeX Font Info: Trying to load font information for U+msa on input line 114. + (/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsa.fd +File: umsa.fd 2013/01/14 v3.01 AMS symbols A +) +LaTeX Font Info: Trying to load font information for U+msb on input line 114. + (/usr/local/texlive/2024/texmf-dist/tex/latex/amsfonts/umsb.fd +File: umsb.fd 2013/01/14 v3.01 AMS symbols B +) + +File: Bilder/Surjektiv.JPG Graphic file (type jpg) + +Package pdftex.def Info: Bilder/Surjektiv.JPG used on input line 237. +(pdftex.def) Requested size: 97.58386pt x 52.80751pt. + +File: Bilder/Injektiv.JPG Graphic file (type jpg) + +Package pdftex.def Info: Bilder/Injektiv.JPG used on input line 255. +(pdftex.def) Requested size: 97.58386pt x 51.49521pt. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 414. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `\exp' on input line 414. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 414. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 414. + +[1 + +{/usr/local/texlive/2024/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <./Bilder/Surjektiv.JPG> <./Bilder/Injektiv.JPG>] [2] + +File: Bilder/z_02.jpg Graphic file (type jpg) + +Package pdftex.def Info: Bilder/z_02.jpg used on input line 739. +(pdftex.def) Requested size: 132.76569pt x 60.73553pt. + +File: Bilder/z_03.jpg Graphic file (type jpg) + +Package pdftex.def Info: Bilder/z_03.jpg used on input line 834. +(pdftex.def) Requested size: 132.76569pt x 48.44492pt. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 888. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 888. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 888. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 888. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 888. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 898. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 898. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 898. + +[3 <./Bilder/z_02.jpg> <./Bilder/z_03.jpg>] [4{/usr/local/texlive/2024/texmf-dist/fonts/enc/dvips/cm-super/cm-super-ts1.enc}] + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1162. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1162. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1162. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 1162. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1162. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1189. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `subscript' on input line 1189. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1189. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1198. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1198. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1224. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1224. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1239. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 1239. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1239. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1239. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 1239. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1239. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1260. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 1260. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `\Omega' on input line 1260. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1260. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1320. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1320. + + +File: Bilder/Delta_Epsilon_Kriterium.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Delta_Epsilon_Kriterium.png used on input line 1330. +(pdftex.def) Requested size: 199.14853pt x 111.55032pt. + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1334. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1334. + +[5 <./Bilder/Delta_Epsilon_Kriterium.png>] + +File: Bilder/Umgebung.jpg Graphic file (type jpg) + +Package pdftex.def Info: Bilder/Umgebung.jpg used on input line 1565. +(pdftex.def) Requested size: 71.6946pt x 49.6529pt. + +File: Bilder/TopoStetigkeit.png Graphic file (type png) + +Package pdftex.def Info: Bilder/TopoStetigkeit.png used on input line 1608. +(pdftex.def) Requested size: 265.53137pt x 91.68762pt. + [6 <./Bilder/Umgebung.jpg> <./Bilder/TopoStetigkeit.png>] + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1615. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1615. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1713. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 1713. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1713. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1740. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 1740. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1740. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1842. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 1842. + +[7] + +File: Bilder/RiemannSumme.png Graphic file (type png) + +Package pdftex.def Info: Bilder/RiemannSumme.png used on input line 1929. +(pdftex.def) Requested size: 66.38284pt x 46.99368pt. + +File: Bilder/R-Integral.png Graphic file (type png) + +Package pdftex.def Info: Bilder/R-Integral.png used on input line 1979. +(pdftex.def) Requested size: 63.72841pt x 54.38411pt. + [8 <./Bilder/RiemannSumme.png> <./Bilder/R-Integral.png>] + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2253. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2253. + +[9] + +File: Bilder/DGL_Partikulare.jpeg Graphic file (type jpg) + +Package pdftex.def Info: Bilder/DGL_Partikulare.jpeg used on input line 2393. +(pdftex.def) Requested size: 265.53137pt x 221.86116pt. + [10 <./Bilder/DGL_Partikulare.jpeg>] + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2466. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 2466. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2466. + + +File: Bilder/PartiellAbleitung.png Graphic file (type png) + +Package pdftex.def Info: Bilder/PartiellAbleitung.png used on input line 2477. +(pdftex.def) Requested size: 265.53137pt x 122.66216pt. + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2511. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 2511. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2511. + + +File: Bilder/Kettenregel_0.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Kettenregel_0.png used on input line 2558. +(pdftex.def) Requested size: 116.83444pt x 42.64076pt. + +File: Bilder/Kettenregel.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Kettenregel.png used on input line 2576. +(pdftex.def) Requested size: 130.11182pt x 45.73291pt. + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2638. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 2638. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2638. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2671. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2671. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2671. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 2671. + +[11 <./Bilder/PartiellAbleitung.png> <./Bilder/Kettenregel_0.png> <./Bilder/Kettenregel.png>] [12] + +File: Bilder/Potential.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Potential.png used on input line 3035. +(pdftex.def) Requested size: 92.93759pt x 85.9264pt. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3069. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3069. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3069. + + +File: Bilder/Quader.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Quader.png used on input line 3096. +(pdftex.def) Requested size: 66.38284pt x 52.26993pt. + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3107. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3107. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3107. + +[13 <./Bilder/Potential.png> <./Bilder/Quader.png>] + +File: Bilder/Jordan-Messbar.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Jordan-Messbar.png used on input line 3226. +(pdftex.def) Requested size: 66.38284pt x 56.81552pt. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3312. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3312. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `subscript' on input line 3312. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3312. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3312. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3312. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3312. + + +File: Bilder/Stueckweise_Gebit.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Stueckweise_Gebit.png used on input line 3335. +(pdftex.def) Requested size: 66.38284pt x 67.7532pt. +[14 <./Bilder/Jordan-Messbar.png> <./Bilder/Stueckweise_Gebit.png>] + +File: Bilder/Substitutionsregel.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Substitutionsregel.png used on input line 3418. +(pdftex.def) Requested size: 103.55707pt x 43.5573pt. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3521. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3521. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3521. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3524. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3524. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3524. + + +File: Bilder/Stokes.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Stokes.png used on input line 3554. +(pdftex.def) Requested size: 199.14853pt x 90.63046pt. + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3568. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3568. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3568. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3586. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `superscript' on input line 3586. + + +Package hyperref Warning: Token not allowed in a PDF string (Unicode): +(hyperref) removing `math shift' on input line 3586. + + +File: Bilder/Oberflachenintegral_BSP.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Oberflachenintegral_BSP.png used on input line 3617. +(pdftex.def) Requested size: 41.42218pt x 41.41965pt. +[15 <./Bilder/Substitutionsregel.png> <./Bilder/Stokes.png>] [16 <./Bilder/Oberflachenintegral_BSP.png>] (./sections/Ubersicht.tex [17] [18] + +File: Bilder/Trigonometric_functions.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Trigonometric_functions.png used on input line 337. +(pdftex.def) Requested size: 265.53137pt x 158.58751pt. + +File: Bilder/unit-circle.jpg Graphic file (type jpg) + +Package pdftex.def Info: Bilder/unit-circle.jpg used on input line 343. +(pdftex.def) Requested size: 265.53137pt x 265.52863pt. + +File: Bilder/Sinh_cosh_tanh.png Graphic file (type png) + +Package pdftex.def Info: Bilder/Sinh_cosh_tanh.png used on input line 351. +(pdftex.def) Requested size: 265.53137pt x 331.90324pt. + +File: Bilder/arsinh.png Graphic file (type png) + +Package pdftex.def Info: Bilder/arsinh.png used on input line 359. +(pdftex.def) Requested size: 252.25398pt x 168.16692pt. + +File: Bilder/arcosh.png Graphic file (type png) + +Package pdftex.def Info: Bilder/arcosh.png used on input line 363. +(pdftex.def) Requested size: 252.25398pt x 168.16692pt. + +File: Bilder/artanh.png Graphic file (type png) + +Package pdftex.def Info: Bilder/artanh.png used on input line 367. +(pdftex.def) Requested size: 252.25398pt x 168.16692pt. + [19 <./Bilder/Trigonometric_functions.png> <./Bilder/unit-circle.jpg> <./Bilder/Sinh_cosh_tanh.png> <./Bilder/arsinh.png> <./Bilder/arcosh.png> <./Bilder/artanh.png>] [20]) (./AnalysisZF.aux) + *********** +LaTeX2e <2023-11-01> patch level 1 +L3 programming layer <2024-02-20> + *********** +Package rerunfilecheck Info: File `AnalysisZF.out' has not changed. +(rerunfilecheck) Checksum: D41D8CD98F00B204E9800998ECF8427E;0. + ) +Here is how much of TeX's memory you used: + 34501 strings out of 474116 + 695943 string characters out of 5743682 + 2035187 words of memory out of 5000000 + 55661 multiletter control sequences out of 15000+600000 + 567180 words of font info for 69 fonts, out of 8000000 for 9000 + 1141 hyphenation exceptions out of 8191 + 108i,21n,107p,10931b,875s stack positions out of 10000i,1000n,20000p,200000b,200000s + +Output written on AnalysisZF.pdf (20 pages, 4183537 bytes). +PDF statistics: + 2022 PDF objects out of 2073 (max. 8388607) + 1876 compressed objects within 19 object streams + 673 named destinations out of 1000 (max. 500000) + 2791 words of extra memory for PDF output out of 10000 (max. 10000000) + diff --git a/zusammenfassung/analysis/AnalysisZF.out b/zusammenfassung/analysis/AnalysisZF.out new file mode 100644 index 0000000..e69de29 diff --git a/zusammenfassung/analysis/AnalysisZF.pdf b/zusammenfassung/analysis/AnalysisZF.pdf new file mode 100644 index 0000000..2a2296a Binary files /dev/null and b/zusammenfassung/analysis/AnalysisZF.pdf differ diff --git a/zusammenfassung/analysis/AnalysisZF.tex b/zusammenfassung/analysis/AnalysisZF.tex new file mode 100644 index 0000000..bc4f56e --- /dev/null +++ b/zusammenfassung/analysis/AnalysisZF.tex @@ -0,0 +1,3745 @@ +\documentclass[a4paper, fontsize = 8pt, landscape]{scrartcl} +\usepackage[german]{babel} +\usepackage[landscape, margin=0.5cm]{geometry} +\usepackage[dvipsnames]{xcolor} +% Hyperref links, pdf metadata +\usepackage{hyperref} +\usepackage{amscd, amsmath, amssymb, blindtext, empheq, enumitem, multicol} +\usepackage{mathtools} +\usepackage{graphicx} +\usepackage{tikz} +\usepackage{array} %for bigger tabular spacings +\usepackage{multirow} % for multirow cells in tabular +%% Formal tables +\usepackage{booktabs} +%% Colorbox +\usepackage[most]{tcolorbox} + +% make document compact +\parindent 0pt +\pagestyle{empty} +\setlength{\unitlength}{1cm} +\setlist{leftmargin = *} + +% define some colors +\definecolor{title}{RGB}{229,140,140} +\definecolor{subtitle}{RGB}{234,165,165} +\definecolor{subsubtitle}{RGB}{249,210,210} +\definecolor{text}{RGB}{0,0,0} +\definecolor{formulabox}{RGB}{182,225,189} + +% section color box +\setkomafont{section}{\mysection} +\newcommand{\mysection}[1]{\vspace*{-3pt}% Space before Box + \Large\normalfont \sffamily \bfseries% + \setlength{\fboxsep}{0cm}%already boxed + \colorbox{title}{% + \begin{minipage}{\linewidth}% + \vspace*{2pt}%Space before + \leftskip2pt %Space left + \rightskip\leftskip %Space right + {\color{text} #1} + \vspace*{1pt}%Space after + \end{minipage}% + }} +%subsection color box +\setkomafont{subsection}{\mysubsection} +\newcommand{\mysubsection}[1]{\vspace*{-3pt}% Space before Box + \normalsize \normalfont \sffamily \bfseries% + \setlength{\fboxsep}{0cm}%already boxed + \colorbox{subtitle}{% + \begin{minipage}{\linewidth}% + \vspace*{2pt}%Space before + \leftskip2pt %Space left + \rightskip\leftskip %Space right + {\color{text} #1} + \vspace*{1pt}%Space after + \end{minipage}% + }} +%subsubsection color box +\setkomafont{subsubsection}{\mysubsubsection} +\newcommand{\mysubsubsection}[1]{\vspace*{-5pt}% Space before Box + \normalsize \normalfont \sffamily % + \setlength{\fboxsep}{0cm}%already boxed + \colorbox{subsubtitle}{% + \begin{minipage}{\linewidth}% + \vspace*{2pt}%Space before + \leftskip2pt %Space left + \rightskip\leftskip %Space right + {\color{text} #1} + \vspace*{1pt}%Space after + \end{minipage}% + }} + + + \usepackage{afterpage} +\newcommand\myemptypage{ + \null + \thispagestyle{empty} + \addtocounter{page}{-1} + \newpage + } + +% equation box +\newcommand{\eqbox}[1]{\fcolorbox{black}{white}{\hspace{0.5em}#1\hspace{0.5em}}} +\newcommand{\eqboxf}[1]{\fcolorbox{black}{formulabox}{\hspace{0.5em}#1\hspace{0.5em}}} + +%macros +\newcommand{\vect}[1]{\mathbf{#1}} +\newcommand{\liminfty}[1]{\lim\limits_{#1 \to \infty}} +\renewcommand{\Im}[1]{\text{Im}(#1)} +\renewcommand{\Re}[1]{\text{Re}(#1)} +\newcommand{\R}[0]{\mathbb{R}} +\newcommand{\N}[0]{\mathbb{N}} +\newcommand{\Z}[0]{\mathbb{Z}} +\newcommand{\C}[0]{\mathbb{C}} + +\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} +\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} +\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} + + + + +\begin{document} + +\setcounter{secnumdepth}{0} %no enumeration of sections +\begin{multicols*}{3} + \begin{center} + \Large{Analysis 1 \& 2} \\ + \tiny{von Jirayu Ruh, \href{mailto:jirruh@ethz.ch}{jirruh@ethz.ch}} + \end{center} + + + \section{Grundlagen} + \subsection{Logik} + + \begin{center} + \begin{tabular}{ c c c c c c c c} \toprule + & \hspace*{-10pt} & \hspace*{-10pt} Negation & \hspace*{-10pt} AND & \hspace*{-10pt} OR & \hspace*{-10pt} Implikation & \hspace*{-10pt} Äquivalenz \\ + $A$ & \hspace*{-10pt} $B$ & \hspace*{-10pt} $\neg A$ & \hspace*{-10pt} $A \land B$ & \hspace*{-10pt} $A \lor B$ & \hspace*{-10pt} $A \rightarrow B$ & \hspace*{-10pt} $A \leftrightarrow B$ \\ \midrule + w & \hspace*{-10pt} w & \hspace*{-10pt} f & \hspace*{-10pt} w & \hspace*{-10pt} w & \hspace*{-10pt} w & \hspace*{-10pt} w \\ + w & \hspace*{-10pt} f & \hspace*{-10pt} f & \hspace*{-10pt} f & \hspace*{-10pt} w & \hspace*{-10pt} f & \hspace*{-10pt} f \\ + f & \hspace*{-10pt} w & \hspace*{-10pt} w & \hspace*{-10pt} f & \hspace*{-10pt} w & \hspace*{-10pt} w & \hspace*{-10pt} f \\ + f & \hspace*{-10pt} f & \hspace*{-10pt} w & \hspace*{-10pt} f & \hspace*{-10pt} f & \hspace*{-10pt} w & \hspace*{-10pt} w \\ \bottomrule + \end{tabular} + \end{center} + + i) Wahre Implikation: $A \Rightarrow B$ (''A ist hinreichend für B''). + + ii) Wahre Äquivalenz: $A \Leftrightarrow B$ (''A gilt genau dann, wenn B gilt''). + + \begin{center} + Negation der Implikation: \quad \eqbox{$\neg(A \rightarrow B) \Leftrightarrow A \land \neg B$} + \end{center} + + \subsubsection{Kontraposition} + + Falls $A \Rightarrow B$, so gilt auch $\neg B \Rightarrow \neg A$ (''B ist notwendig für A''). + + + \subsubsection{Indirekter Beweis} + + Zum Beweis der Aussage $A \Rightarrow B$ genügt es die Aussage $\neg B \Rightarrow \neg A$ zu zeigen oder die Annahme $A \land \neg B$ zum Widerspruch zu führen. + + + \subsubsection{Prinzip der vollständigen Induktion} + + Sei $A(n)$ eine Aussage mit $n \in \N$. + + \begin{tabular}{r p{0.28\textwidth}} \toprule + i) & \hspace*{-10pt} Induktions-Verankerung: Zeige, dass $A(1)$ gilt. \\ + ii) & \hspace*{-10pt} Induktions-Annahme: Annahme, dass $A(n)$ gilt. \\ + iii) & \hspace*{-10pt} Induktionsschritt: Beweise, dass $A(n+1)$ gilt unter der Annahme, dass $A_n$ gilt. + Achtung, nichts unbewiesenes gleichsetzen! \\ \bottomrule + \end{tabular} + + + \subsection{Mengenlehre} + + Eine Menge wird oft bestimmt durch eine Bedingung $A(b)$ wobei $b \in X$: + + \begin{center} + \eqbox{$Y= \{b \in X ; A(b) \}$} + \end{center} + + \begin{center} + \begin{tabular}{r l l} \toprule + Notation & Definition & \\ \midrule + $\{\dots\}$ & \multicolumn{2}{l}{Set: Sammlung von ungeordneten Elemente} \\ + $(\dots)$ & \multicolumn{2}{l}{Tupel: Sammlung von geordneten Elementen} \\ + $A \cup B$ & Vereinigungsmenge & $ := \{x \in \R;(x \in A) \lor (x \in B)\}$ \\ + $A \cap B$ & Schnittmenge & $ := \{x \in \R;(x \in A) \land (x \in B)\}$ \\ + $A \setminus B$ & Differenzmenge & $ := \{x \in \R; (x \in A) \land (x \notin B)\}$ \\ + $A^C$ & \multicolumn{2}{l}{Komplement, alle Elemente die nicht in A sind} \\ + $A \subset B$ & \multicolumn{2}{l}{A ist eine Teilmenge (oder gleich) von B} \\ + $\emptyset$ & Leeres Set & \\\bottomrule + \end{tabular} + \end{center} + + + \subsubsection{Quantoren} + + \begin{center} + \begin{tabular}{r l } \toprule + Quantor & Beschreibung \\ \midrule + $\forall x, A(x)$ & Für alle x gilt $A(x)$ \\ + $\exists x, A(x)$ & Es existiert min. ein x, wo $A(x)$ gilt. \\ + $\exists! x, A(x)$ & Es existiert genau ein x, wo $A(x)$ gilt. \\ + $\nexists x, A(x)$ & Es existiert kein x, wo $A(x)$ gilt. \\ \bottomrule + \end{tabular} + \end{center} + + Negation: \eqbox{$\neg (\forall x, A(x)) \Leftrightarrow \exists x, \neg A(x) \quad \neg (\exists x, A(x)) \Leftrightarrow \forall x, \neg A(x)$} + \vfill\null + \columnbreak + + + \subsection{Funktionen (Abbildungen)} + + Eine Abbildung $f$ mit Definitionsbereich $X$ und Bild-/Wertebereich $Y$: + + \begin{center} + \eqbox{$f: X \to Y, \quad x \mapsto f(x)$} + \end{center} + + \begin{center} + \begin{tabular}{r l} \toprule + Definition & Beschreibung \\ \midrule + Urbild von $B \subset Y$ & $f^{-1}(B) := \{x \in X: f(x) \in B\}$ \\ + Identität & $id_X : X \to X, \quad x \mapsto x = id_X(x)$ \\ + \bottomrule + \end{tabular} + \end{center} + + \subsubsection{Komposition} + + Sei $f: X \to Y$ und $g: Y \to Z$. Dann ist die Komposition von $f$ und $g$: + + \begin{center} + \eqbox{$F:= g \circ f: X \to Z, \quad x \mapsto g(f(x))$} + \end{center} + + Die Komposition ist Assoziativ: $(h \circ g) \circ f = h \circ (g \circ f)$ + + + \begin{center} + \begin{minipage}{0.5\linewidth} + \subsubsection{Surjektiv} + + $f$ heisst surjektiv falls jedes $y \in Y$ \emph{mindestens} ein Urbild hat, d.h.: + \begin{center} + $\forall y \in Y, \, \exists x \in X : f(x) = y$ + \end{center} + \end{minipage} + \begin{minipage}{0.49\linewidth} + \begin{center} + \includegraphics[width=0.75\linewidth]{Bilder/Surjektiv.JPG} + \end{center} + \end{minipage} + \end{center} + + + \begin{center} + \begin{minipage}{0.5\linewidth} + \subsubsection{Injektiv} + + $f$ heisst injektiv falls jedes $y \in Y$ \emph{höchstens} ein Urbild hat, d.h.: + + \begin{center} + $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ + \end{center} + \end{minipage} + \begin{minipage}{0.49\linewidth} + \begin{center} + \includegraphics[width=0.75\linewidth]{Bilder/Injektiv.JPG} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Bijektiv und Umkehrabbildung} + + $f$ heisst bijektiv, falls jedes $y \in Y$ \emph{genau} ein Urbild hat, d.h. $f$ ist surjektiv und injektiv. + + Ist $f$ bijektiv, dann kann man eine \emph{Umkehrabbildung} $f^{-1}$ einführen: + + \begin{center} + \eqbox{$f^{-1}: Y \to X, \quad y \mapsto f(y)$} + \end{center} + + + \subsection{Reelle Zahlen} + + \begin{center} + \begin{tabular}{r l} \toprule + Natürliche Zahlen & $\mathbb{N} = \{1, 2, 3, \dots\}, \, \mathbb{N}_0 = \{0, 1, 2, 3, \dots\}$ \\ + Ganze Zahlen & $\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$ \\ + Rationale Zahlen & $\mathbb{Q} = \{\frac{p}{q}; p \in \mathbb{Z} \land q \in \mathbb{N}\}$ \\ + Irrationale Zahlen & $\R \setminus \mathbb{Q}$ \\ + Reelle Zahlen & $\R = \mathbb{Q} + \R \setminus \mathbb{Q}$ \\ \midrule + $[a,b]$ & \hspace*{-10pt} $ := \{x \in \R; a \leq x \leq b\}$ \\ + $]a,b[ \Leftrightarrow (a,b)$ & \hspace*{-10pt} $:= \{x \in \R; a < x < b\}$ \\ + \bottomrule + \end{tabular} + \end{center} + + \subsubsection{Vollständigkeitsaxiom} + + $\R$ ist \emph{Ordnungsvollständig}, dass heisst: \eqbox{$\forall a, b \in \R \,\, \exists c \in \R: \, a \leq c \leq b$} + + \subsubsection{Dreiecksungleichung} + + Es gilt für alle $x,y \in \R$: \eqboxf{$| x + y | \leq | x | + | y |$} + + \subsubsection{Archimedisches Prinzip} + + Zu jeder Zahl $0 < b \in \R$ gibt es ein $n \in \mathbb{N}$ mit $b < n$. \medskip + + Daraus folgt: $\infty$ und $-\infty$ ist keine reelle Zahl. + \vfill\null + \columnbreak + + + \subsubsection{Supremum und Infimum} + + + \begin{center} + \begin{minipage}{0.48\linewidth} + Eine Menge $A \subset \R$ heisst nach oben beschränkt, falls gilt + + \begin{center} + $\exists b \in \R \, \, \forall a \in A: a \leq b$ + \end{center} + + wobei $b$ eine obere Schranke genannt wird, die kleinste obere Schranke ist das \textbf{Supremum}. + + \begin{center} + $\sup\limits_{x \in \R} A \Leftrightarrow \sup\{A; x \in \R\}$ + \end{center} + + Wird das Supremum angenommen in $A$, dann ist es das \textbf{Maximum}. + \vfill\null + \end{minipage} + \,\vline\, + \begin{minipage}{0.48\linewidth} + Eine Menge $A \subset \R$ heisst nach unten beschränkt, falls gilt + + \begin{center} + $\exists b \in \R \, \, \forall a \in A: a \geq b$ + \end{center} + + wobei $b$ eine untere Schranke genannt wird, die kleinste untere Schranke ist das \textbf{Infimum}. + + \begin{center} + $\inf\limits_{x \in \R} A \Leftrightarrow \inf\{A; x \in \R\}$ + \end{center} + + Wird das Infimum angenommen in $A$, dann ist es das \textbf{Minimum}. + \vfill\null + \end{minipage} + \end{center} + + + \subsection{Potenzen und Wurzel} + + Sei $n,m \in \N$. Die reelle Wurzel ist definiert auf $\R^+$. + + \begin{center} + \begin{minipage}{0.48\linewidth} + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{tabular}{r l} + $a^n \cdot a^m$ & \hspace*{-10pt}$= a^{n + m}$ + \\ + $\dfrac{a^n}{a^m}$ & \hspace*{-10pt}$= a^{n - m}$ \\ + $a^n \cdot b^n$ & \hspace*{-10pt}$= (a \cdot b)^n$ \\ + $\dfrac{a^n}{b^n}$ & \hspace*{-10pt}$= \left(\dfrac{a}{b}\right)^n$ \\ + $(a^n)^m$ & \hspace*{-10pt}$= a^{n \cdot m}$ \\ + $b^0$ & \hspace*{-10pt}$= 1$ \\ + \end{tabular} + \end{center} + \end{minipage} + \,\vline\, + \begin{minipage}{0.48\linewidth} + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{tabular}{r l} + $b^{\frac{n}{m}}$ & \hspace*{-10pt}$= \sqrt[m]{b^n}$ \\ + $b^{-1}$ & \hspace*{-10pt}$= \dfrac{1}{b^n}$ \\ + $\sqrt[n]{a} \cdot \sqrt[n]{b}$ & \hspace*{-10pt}$= \sqrt[n]{a \cdot b}$ + \\ + $\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ & \hspace*{-10pt}$= \sqrt[n]{\dfrac{a}{b}}$ \\ + $\sqrt[n]{\sqrt[m]{a}}$ & \hspace*{-10pt}$= \sqrt[n \cdot m]{a}$ \\ + $\sqrt[n]{1}$ & \hspace*{-10pt}$= 1$ \\ + \end{tabular} + \end{center} + \end{minipage} + \end{center} + + \textbf{Achtung}: Beim Wurzel ziehen, immer $\pm$ vor der Wurzel! + + + \subsection{Logarithmus} + + Der Logarithmus ist definiert auf $\R^+ \setminus {0}$. Eigenschaften: + + \begin{center} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{tabular}{r l} + $\log(a \cdot b)$ & \hspace*{-10pt}$= \log(a) + \log(b)$ + \\ + $\log\left(\dfrac{a}{b}\right)$ & \hspace*{-10pt}$= \log(a) - \log(b)$ \\ + $\log(a^n)$ & \hspace*{-10pt}$= n \cdot \log(a)$ \\ + \end{tabular} + \end{center} + \end{minipage} + \,\vline\, + \begin{minipage}{0.47 \linewidth} + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{tabular}{r l} + $e^{\log(a)}$ & \hspace*{-10pt}$= a$ \\ + $\log(e)$ & \hspace*{-10pt}$= 1$ \\ + $\log(1)$ & \hspace*{-10pt}$= 0$ \\ + \end{tabular} + \end{center} + \end{minipage} + \end{center} + + Bemerkung: $x = e^n \Leftrightarrow \log(x) = n$ + + + \subsection{Die Exponentialfunktion ($\exp(x) = e^x$)} + + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \begin{tabular}{r l} + $e^{z + w}$ & \hspace*{-10pt}$= e^z \cdot e^w$ \\ + $e^{-x}$ & \hspace*{-10pt}$= \dfrac{1}{e^x}$ \\ + $\exp^{-1}(y)$ & \hspace*{-10pt}$= \log(y)$ \\ + \end{tabular} + \end{center} + \end{minipage} + \,\vline\, + \begin{minipage}{0.47 \linewidth} + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{tabular}{r l} + $\lim\limits_{x \to \infty} e^x$ & \hspace*{-10pt}$= \infty$ \\ + $e^0$ & \hspace*{-10pt}$= 1$ \\ + $\lim\limits_{x \to -\infty} e^x$ & \hspace*{-10pt}$= 0$ \\ + \end{tabular} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Trigonometrische- und Hyperbelfunktionen} + + \begin{center} + \renewcommand{\arraystretch}{2.5} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \begin{tabular}{r l} + $\sin(z)$ & \hspace*{-10pt}$= \dfrac{e^{iz} - e^{-iz}}{2i}$ \\ + $\cos(z)$ & \hspace*{-10pt}$= \dfrac{e^{iz} + e^{-iz}}{2}$ \\ + \end{tabular} + \end{center} + \end{minipage} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \begin{tabular}{r l} + $\sinh(z)$ & \hspace*{-10pt}$= \dfrac{e^{z} - e^{-z}}{2}$ \\ + $\cosh(z)$ & \hspace*{-10pt}$= \dfrac{e^{z} + e^{-z}}{2}$ \\ + \end{tabular} + \end{center} + \end{minipage} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Vektoren} + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + Euklidischer Raum & $\R^n = \{\vect{x} = (x_1, \dots, x_n); x_i \in \R\}$ \\ + Addition & $\vect{x} + \vect{y} = (x_1 + y_1, \dots, x_n + y_n), \, x_i, y_i \in \R^n$ \\ + Skalarmultiplikation & $\lambda \vect{x} = (\lambda x_1, \dots, \lambda x_n), \, x _i\in \R^n, \lambda \in \R$ \\ + Skalarprodukt & $\langle \vect{x}, \vect{y} \rangle = x_1 y_1 + \dots + x_n y_n$ \\ + Euklidische Norm & $|| x || := \sqrt{\displaystyle\sum^n_{i = 1} x_i^2}$ \\ \bottomrule + \end{tabular} + \end{center} + + \subsubsection{Cauchy-Schwarz} + + Für alle $\vect{x}, \vect{y} \in \R^n$ gilt: + + \begin{center} + \eqbox{$| \vect{x} \cdot \vect{y} | \leq || \vect{x} || \cdot || \vect{y} ||$} + \end{center} + + + \subsection{Komplexe Zahlen} + + \begin{center} + \eqbox{$\mathbb{C} := \{a + i b: a,b \in \R\}$} wobei \eqboxf{$i = \sqrt{-1}$} + \end{center} + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + Realteil & $\Re{z} = a = \dfrac{z + \overline{z}}{2}$ \\ + Imaginärteil & $\Im{z} = b = \dfrac{z - \overline{z}}{2i}$ \\ \midrule + Komplexe Konjugation & $\overline{z} = a - ib$ \\ + & $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, \, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ \\ \midrule + Addition & $z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$ \\ + Multiplikation & $z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + i(a_2 b_1 + a_1 b_2)$ \\ + Division & $\dfrac{z_1}{z_2} = \dfrac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}$ \\ \midrule + Absolutbetrag & $| z | = \sqrt{z \overline{z}} = \sqrt{\Re{z}^2 + \Im{z}^2}$ \\ + & $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ \\ + Phase & $\varphi = \arctan \left( \dfrac{\Im{z}}{\Re{z}} \right)$ \\ \bottomrule + \end{tabular} + \end{center} + + \subsubsection{Eulersche Formel und Eulers Identität} + + \begin{center} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \eqboxf{$e^{i\varphi} = \cos\varphi + i \sin\varphi$} + \end{center} + \end{minipage} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \eqbox{$e^{i \pi} = -1$} \qquad \eqbox{$e^{2 \pi i} = 1$} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Polarform} + + In der Polardarstellung $z = | z | e^{i\varphi}$ gelten folgende Rechenregel: + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{r l} \toprule + Realteil & $\Re{z} = \cos(\varphi)$ \\ + Imaginärteil & $\Im{z} = \sin(\varphi)$ \\ + \midrule + Komplex Konjugation & \hspace*{-10pt} $\overline{z} = | z | e^{-i\varphi} = |z| \cdot (\cos\varphi - i\sin\varphi)$ \\ \midrule + Multiplikation & \hspace*{-10pt} $z_1 \cdot z_2 = |z_1| \cdot |z_2| e^{i(\varphi_1+\varphi_2)}$ \\ + Division & \hspace*{-10pt} $\dfrac{z_1}{z_2} = \dfrac{|z_1|}{|z_2|} \cdot e^{i(\varphi_1 - \varphi_2)}$ \\ + \midrule + Potenzieren & \hspace*{-10pt} $(|z|e^{i\varphi})^n = |z|^n \cdot e^{i (n \cdot \varphi)}$ \\ + n-te Wurzel & \hspace*{-10pt} $\sqrt[n]{z} = \sqrt[n]{|z|} \cdot e^{i(\frac{\varphi}{n} + \frac{2 \pi k}{n})}, \, k = 0, \dots, n-1$ \\ + \bottomrule + \end{tabular} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Fundamentalsatz der Algebra} + + Jedes Polynom $p(z)$ vom Grad $n \geq 1$ hat in $\mathbb{C}$ genau $n$ Nullstellen. + + \begin{center} + $p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1 z + a_0$ + \end{center} + + Damit ist $\mathbb{C}$ im Unterschied zu $\R$ \textbf{algebraisch vollständig}. + + \subsubsection{Mitternachtsformel} + + Die Nullstellen von $az^2 + b z + c = 0$ sind für $z \in \C$: + + \begin{center} + \eqbox{$z_\pm = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \dfrac{-b}{2a} \pm \sqrt{\dfrac{b^2 - 4 ac}{4a^2}}$} + \end{center} + + \subsubsection{Binomische Formeln} + + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{minipage}{0.465 \linewidth} + \begin{center} + \begin{tabular}{r l} + $(a+b)^2$ & \hspace*{-10pt}$= a^2 + 2ab + b^2$ \\ + $(a-b)^2$ & \hspace*{-10pt}$= a^2 - 2ab + b^2$ \\ + $(a+b)(a-b)$ & \hspace*{-10pt}$= a^2 - b^2$ \\ + \end{tabular} + \end{center} + \end{minipage} + \,\vline\, + \begin{minipage}{0.5 \linewidth} + \begin{center} + \renewcommand{\arraystretch}{1.35} + \begin{tabular}{r l} + $(a + b)^3$ & \hspace*{-10pt}$= a^3 + 3a^2 b + 3a b^2 + b^3$ \\ + $(a - b)^3$ & \hspace*{-10pt}$= a^3 - 3a^2b + 3 a b^2 - b^3$ \\ + \end{tabular} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Binomischer Lehrsatz} + + Für alle $n \in \N$ und $x,y \in \R$ gilt: + + \begin{center} + \eqbox{$\displaystyle (x + y)^n = \sum\limits^n_{k = 0} \binom{n}{k} \, x^k y^{n-k}$} \, wobei $\displaystyle \binom{n}{k} = \dfrac{n!}{k!(n-k)!}$ + \end{center} + + + \subsection{Sonstiges} + + Bei Ungleichungen muss man bei einer \textbf{Multiplikation mit negativen Zahlen das Relationszeichen umdrehen}! \medskip + + Zum herausfinden einer Rekursivformel ist eine Primfaktorzerlegung sehr hilfreich! + + \subsubsection{Die Bernouillische Ungleichung} + + $\forall x \in \R, x \geq -1$ und $\forall n \in \N$ gilt: + + \begin{center} + $(1 + x)^n \geq 1 + nx$ + \end{center} + + + \subsubsection{Wallisches Produkt} + + Die irrationale Zahl $\pi$ wird approximiert durch: + + \begin{center} + $\displaystyle \pi = \lim\limits_{n \to \infty} \dfrac{1}{n} \dfrac{(2^n n!)^4}{(2n!)^2}$ + \end{center} + + \subsubsection{Gerade und Ungerade Funktionen} + + Eine Funktion $f(t)$ heisst: + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{l} \toprule + i) \emph{gerade} falls $f(t) = f(-t)$ (Symmetrisch zur $y$-Achse). \\ + ii) \emph{ungerade} falls $f(t) = -f(-t)$ (Punktsymm. zum Ursprung). \\ + \bottomrule + \end{tabular} + \end{center} + + Es gelten die folgenden Eigenschaften: \medskip + + - Das Produkt zweier geraden oder ungeraden Funktionen ist gerade. + + - Das Produkt einer geraden und ungeraden Funktion ist ungerade. + + - Falls $f(t)$ gerade ist, gilt $\int\limits_{-a}^{0} f(t) dt = \int\limits_{0}^{a} f(t) dt$. + + - Falls $f(t)$ ungerade ist, gilt $\int\limits_{-a}^{a} f(t) dt = 0$. + \vfill\null + \columnbreak + + + \subsection{Trigonometrische Funktionen: Wertetabelle} + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r c c c c c} \toprule + deg/rad & 0$^\circ$/0 & 30$^\circ$/$\frac{\pi}{6}$ & $45^\circ$/$\frac{\pi}{4}$ & 60$^\circ$/$\frac{\pi}{3}$ & 90$^\circ$/$\frac{\pi}{2}$ \\ \midrule + sin & $0$ & $\frac{\sqrt{1}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{3}}{2}$ & $1$ \\ + cos & $1$ & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{1}}{2}$ & $0$ \\ + tan & $0$ & $\frac{\sqrt{3}}{3}$ & $1$ & $\sqrt{3}$ & - \\ \bottomrule + \end{tabular} + \begin{tabular}{r c c c c} \toprule + deg/rad & 120$^\circ$/$\frac{2\pi}{3}$ & 135$^\circ$/$\frac{3\pi}{4}$ & $150^\circ$/$\frac{5\pi}{6}$ & 180$^\circ$/$\pi$ \\ \midrule + sin & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{1}{2}$ & $0$ \\ + cos & $- \frac{1}{2}$ & $- \frac{\sqrt{2}}{2}$ & $- \frac{\sqrt{3}}{2}$ & $-1$ \\ + tan & $-\sqrt{3}$ & $- 1$ & $-\frac{\sqrt{3}}{3}$ & $0$ \\ \bottomrule + \end{tabular} + \end{center} + + + \subsection{Trigonometrische und Hyperbolische Identitäten} + + \begin{center} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \eqboxf{$cos^2(x) + sin^2(x) = 1$} \medskip + + \eqbox{$\tan(x) = \dfrac{\sin(x)}{\cos(x)}$} + \end{center} + \end{minipage} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \eqbox{$\cosh^2(x) - \sinh^2(x) = 1$} \medskip + + \eqbox{$\tanh(x) = \dfrac{\sinh(x)}{\cosh(x)}$} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Trigonometrische Additionstheoreme} + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{l l} \toprule + \multicolumn{2}{l}{$\cos(x\pm y)=\cos(x)\cos(y)\mp\sin(x)\sin(y)$} \\ + \multicolumn{2}{l}{$\sin(x\pm y)=\sin(x)\cos(y)\pm\cos(x)\sin(y)$} \\ + \midrule + $\cos \left(x+\frac{1}{2} \pi\right)=-\sin (x)$ & \hspace*{-10pt} $\sin \left(x+\frac{1}{2} \pi\right)=\cos (x)$ \\ + \midrule + \multicolumn{2}{l}{$\sin(x)\sin(y)=\frac{1}{2}(\cos(x-y)-\cos(x+y))$} \\ + \multicolumn{2}{l}{$\cos(x)\cos(y)=\frac{1}{2}(\cos(x-y)+\cos(x+y))$} \\ + \multicolumn{2}{l}{$\sin(x)\cos(y)=\frac{1}{2}(\sin(x-y)+\sin(x+y))$} \\ + \midrule + $\sin^2(x)=\frac{1}{2}(1-\cos(2x))$ & \hspace*{-10pt} $\cos^2(x)=\frac{1}{2}(1+\cos(2x))$ \\ + $\sin^{3}(x)=\frac{1}{4}(3 \sin (x)-\sin (3 x))$ & \hspace*{-10pt} $\cos^{3}(x)=\frac{1}{4}(3 \cos (x)+\cos (3 x))$ \\ + \bottomrule + \end{tabular} + \end{center} + + \subsubsection{Hyperbolische Additionstheoreme} + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{l l} \toprule + \multicolumn{2}{l}{$\sinh(x \pm y) = \sinh(x) \cosh(y) \pm \cosh(x) \sinh(y)$} \\ + \multicolumn{2}{l}{$\cosh(x \pm y) = \cosh(x) \cosh(y) \pm \sinh(x) \sinh(y)$} \\ + \midrule + $\cosh(x) = \cos(ix)$ & $\sinh(x) = -i \sin(ix)$ \\ + \midrule + $\sinh^2(x)=\frac{\cosh(2x)-1}{2}$ & $\cosh^2(x)=\frac{\cosh(2x)+1}{2}$ \\ + \bottomrule + \end{tabular} + \end{center} + \vfill\null + \pagebreak + + + \section{Folgen und Reihen} + + + \subsection{Grenzwert einer Folge} + + Die Folge $(a_n)_{n \in \mathbb{N}}$ konvergiert gegen den Grenzwert $a$ für $n \to \infty$, falls + \begin{center} + \eqboxf{$\forall \epsilon > 0 \,\, \exists N(\epsilon) \in \mathbb{N} \text{ so dass } \forall n \geq N: | a_n - a | < \epsilon$} + \end{center} + + Wenn dies gilt, schreibt man: $\liminfty{n} a_n = a$ oder $a_n \to a (n \to \infty)$ + + \begin{center} + \begin{minipage}{0.5\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/z_02.jpg} + \end{center} + \end{minipage} + \begin{minipage}{0.47 \linewidth} + i) Eine Folge heisst \emph{konvergent}, falls sie einen Grenzwert besitzt. \medskip + + ii) Besitzt die Folge keinen Grenzwert heisst sie \emph{divergent}. + \end{minipage} + \end{center} + + + \subsection{Monotonie bei Folgen} + + Eine Folge $(a_n)_{n \in \N}$ bzw. $n \mapsto a_n$ heisst ..., wenn + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + monoton wachsend: & $a_1 \leq a_2 \leq \dots \leq a_{n-1} \leq a_n$ \\ + monoton fallend: & $a_1 \geq a_2 \geq \dots \geq a_{n-1} \geq a_n$ \\ + streng monoton wachsend: & $a_1 < a_2 < \dots < a_{n-1} < a_n$ \\ + streng monoton fallend: & $a_1 > a_2 > \dots > a_{n-1} > a_n$ \\ + \bottomrule + \end{tabular} + \end{center} + + + \subsection{Konvergenzkriterien} + + \subsubsection{Monotone Konvergenz} + + Sei $(a_n)_{n \in \N} \in A$ eine nach oben beschränkte monton wachsende Folge bzw. eine nach unten beschränkte monoton fallende Folge. Dann gilt + + \begin{center} + \eqbox{$\liminfty{n} a_n = \begin{cases} + \sup\limits_{n \in \N}(A) & \text{falls monoton wachsend} \\ + \inf\limits_{n \in \N}(A) & \text{falls monoton fallend} \\ + \end{cases}$} + \end{center} + + \subsubsection{Satz: Rechenregeln unter Konvergenzbedingung} + + Seien $(a_n)_{n \in \N}$, $(b_n)_{n \in \N}$ konvergent mit den Grenzwerten $a$ bzw. $b$. Dann + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + i) & $\liminfty{n}(a_n + b_n) = \liminfty{n} a_n + \liminfty{n} b_n = a + b$ \\ + ii) & $\liminfty{n}(a_n \cdot b_n) = \liminfty{n} a_n \cdot \liminfty{n} b_n = a \cdot b$ \\ + iii) & Falls $\forall n: b \neq 0 \neq b_n$, dann gilt: $\liminfty{n} \left(\dfrac{a_n}{b_n}\right) = \dfrac{a}{b}$ \\ + iv) & Falls $a_n \leq b_n$ für alle $n \in \mathbb{N}$, so ist auch $a \leq b$ \\ \bottomrule + \end{tabular} + \end{center} + + \subsubsection{Dominanz} + + Sei $a,b > 1$ und $r \in N \setminus {1}$. Für die \textbf{Stärke der Divergenz} ($\to \infty$) geltet folgende Kette der asymptotischen Dominanz: + + \begin{center} + $\lim\limits_{n \to \infty}$ \eqbox{$\log_b(n) \prec \sqrt{n} \prec n \prec n^r \prec a^n \prec n! \prec n^n$} + \end{center} + + \subsubsection{Satz} + + Seien $(a_n)_{n \in \N}$ und $(b_n)_{n \in \N}$ zwei Folgen. Sei $\lim\limits_{n \to \infty} a_n = 0$ und $(b_n)_{n \in \N}$ beschränkt. Dann gilt $\lim\limits_{n \to \infty} a_n b_n = 0$. + \vfill\null + \columnbreak + + + \subsection{Teilfolgen und Häufungspunkte} + + \subsubsection{Teilfolge} + + Sei $l: N \to \N$ streng monoton wachsende Abzählung, dann ist $(a_{l(n)})_{n \in \N}$ eine \emph{Teilfolge} von $(a_n)_{n \in \N}$. \medskip + + \subsubsection{Häufungspunkt} + + Ein Punkt $a \in \R$ heisst \emph{Häufungspunkt} von $(a_n)_{n \in \N}$, falls $(a_n)_{n \in \N}$ gegen $a$ eine konvergente Teilfolge besitzt: + + \begin{center} + $a = \lim\limits_{l \to \infty} a_{l(n)}$ + \end{center} + + $a$ ist ein Häufungspunkt von $(a_n)_{n \in \mathbb{N}}$, genau dann wenn + \begin{center} + \eqbox{$\forall \epsilon > 0 \, \, \forall n \in \mathbb{N} \,\, \exists \, l \geq n: | a - a_{l(n)} | < \epsilon$} + \end{center} + + \subsubsection{Limes superior und inferior} + + Sei $(a_n)_{n \in \mathbb{N}}$ eine Folge, dann ist Limes superior und Limes inferior: + + \begin{center} + \begin{minipage}{0.5\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/z_03.jpg} + \end{center} + \end{minipage} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + $\liminf\limits_{n \to \infty} a_n$ & \hspace*{-10pt}$:= \sup\limits_{n \in \mathbb{N}}\inf\limits_{k \geq n} a_k$ \\ + $\limsup\limits_{n \to \infty} a_n$ & \hspace*{-10pt}$:= \inf\limits_{n \in \mathbb{N}}\sup\limits_{k \geq n} a_k $ \\ + \bottomrule + \end{tabular} + \end{center} + \end{minipage} + \end{center} + + wobei Limes superior und Limes inferior beides Häufungspunkte von $(a_n)_{n \in \N}$ sind. Ausserdem gilt: \medskip + + + i) Eine beschränkte Folge konvergiert $\Leftrightarrow \limsup\limits_{n \to \infty} a_n = \liminf\limits_{n \to \infty} a_n$ + + ii) Eine beschränkte Folge, welche nicht konvergiert, hat mindestens zwei + Häufungspunkte. + + + \subsubsection{Bolzano Weierstrass} + + \begin{center} + \eqboxf{\begin{tabular}{C{0.89\linewidth}} + Jede beschränkte Folge in $\R^d$ besitzt eine konvergente Teilfolge, also auch einen Häufungspunkt. \\ + \end{tabular}} + \end{center} + + + \subsection{Cauchy Folge und Cauchy-Kriterium} + + Eine Folge $(a_n)_{n \in \N}$ heisst \emph{Cauchy-Folge}, falls gilt + + \begin{center} + \eqbox{$\forall \epsilon > 0 \,\, \exists n_0(\epsilon) \in \N \text{ s.d. } \forall m, n \geq n_0(\epsilon): |a_m - a_n| < \epsilon$} + \end{center} + + D.h. wenn es zu jedem $\epsilon > 0$ einen Index $n_0(\epsilon)$ gibt, so dass ab diesem Index alle Folgenglieder weniger als $\epsilon$ voneinander entfernt sind. + + \subsection{Satz: Cauchy-Kriterium} + + Für $(a_n)_{n \in \N} \subset \R$ sind äquivalent: + + \begin{center} + \eqboxf{$(a_n)_{n \in \N} \text{ konvergiert } \Leftrightarrow (a_n)_{n \in \N} \text{ ist Cauchy}$} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Folgen in $\R^d$ oder $\mathbb{C}$} + + Sei $(\vect{a}_n)_{n \in \mathbb{N}}$ eine Folge in $\R^d$ mit $\vect{a}_n = (a^1_n, \dots, a^d_n) \in \R^d$. Es gilt + + \begin{center} + \eqbox{$\liminfty{n} \vect{a}_n = \vect{a}$ falls $\liminfty{n} || \vect{a}_n - \vect{a} || = 0$} + \end{center} + + Es sind äquivalent: $\liminfty{n} \vect{a}_n = \vect{a} \Leftrightarrow \forall i \in \{1, \dots, d\}: \liminfty{n} a_n^i = a^i$ + + \subsubsection{Beschränkt in $\R^d$} + + Eine vektorwertige Folge $(\vect{a}_n)_{n \in \mathbb{N}} \subset \R^d$ ist \emph{beschränkt}, falls gilt + + \begin{center} + \eqbox{$\exists \, C \in \R \text{ so dass } \forall n \in \mathbb{N}: ||\vect{a}_n|| \leq C$} + \end{center} + + + \subsection{Reihen} + + Sei $(a_k)_{k \in \N}$ eine Folge. Die Folge $(S_n)_{n \in \mathbb{N}}$ der \emph{Partialsummen} ist + + \begin{center} + $\displaystyle S_n = a_1 + \dots + a_n = \sum\limits^n_{k = 1} a_k, \quad n \in \N$ + \end{center} + + Man sagt die Reihe ist \emph{konvergent}, falls $\liminfty{n} S_n = \sum\limits^\infty_{k = 1} a_k$ existiert. + + \subsubsection{Cauchy Kriterium} + + Die Reihe $\sum\limits_{k=1}^\infty a_k$ ist konvergent \emph{genau dann, wenn} gilt: + + \begin{center} + \eqbox{$\left| \sum\limits_{k = n+1}^m a_k \right| \to 0 \qquad (n \geq l, l \to \infty)$} + \end{center} + + + \subsection{Konvergenzkriterien für Reihen} + + Die Bedingung Nullfolge ($a_k \xrightarrow[]{k \to \infty} 0$) ist \textbf{notwendig}, aber \emph{nicht} hinreichend für die Konvergenz einer Reihe. + + \subsubsection{Quotientenkriterium} + + Sei $(a_k)_{k \in \N}$ eine Folge in $\R$ oder $\C$. Sei $a_k \neq 0$ und $k \in \N$. Es gilt: + + \begin{center} + \eqbox{$\liminfty{k} \left| \dfrac{a_{k+1}}{a_k} \right| = \begin{cases} + < 1 & S_n \text{ konvergiert absolut}, \\ + > 1 & S_n \text{ divergiert} \\ + \end{cases}$} + \end{center} + + \subsubsection{Wurzelkriterium} + + Sei $(a_k)_{k \in \N}$ eine Folge in $\R$ oder $\C$. + + \begin{center} + \eqboxf{$\limsup\limits_{k \to \infty} \sqrt[k]{|a_k|} = \begin{cases} + < 1 & S_n \text{ konvergiert absolut}, \\ + > 1 & S_n \text{ divergiert} \\ + \end{cases}$} + \end{center} + + \subsubsection{Minorantenkriterium} + + Sei $b_n \leq a_n$ und $\displaystyle \sum\limits_{n = 1}^\infty b_n$ divergent $\displaystyle \Rightarrow \sum\limits_{n = 1}^\infty a_n$ ist auch divergent. + + \subsubsection{Majorantenkriterium} + + Sei $|a_n| \leq b_n$ und $\displaystyle \sum\limits_{n = 1}^\infty b_n$ konvergent $\displaystyle \Rightarrow \sum\limits_{n = 1}^\infty a_n$ ist auch konvergent. + \vfill\null + \columnbreak + + + \subsection{Absolute Konvergenz} + + Die Reihe $\displaystyle \sum\limits_{n = 1}^\infty a_n$ \emph{konvergiert absolut}, falls $\displaystyle \sum\limits_{n = 1}^\infty | a_n |$ konvergiert. + + + \subsubsection{Satz} + + Seien die Reihen $\displaystyle \sum\limits_{n = 1}^\infty a_n$ und $\displaystyle \sum\limits_{k = 1}^\infty b_k$ absolut konvergent. Dann konvergiert die Reihe der Produkte absolut mit + + \begin{center} + \eqbox{$\displaystyle \sum\limits_{n,k = 1}^\infty a_n b_k = \sum\limits_{n = 1}^\infty a_n \cdot \sum\limits_{k = 1}^\infty b_k$} + \end{center} + + unabhängig von der Summationsreihenfolge. + + + \subsection{Satz: Leibnitzkriterium} + + Sei $(a_n)_{n \in \N}$ eine monoton fallende, reelle \emph{Nullfolge}. Dass heisst + + \begin{center} + \eqbox{$a_{n + 1} \leq a_n \quad \forall n \in \N_0$ und $\lim\limits_{n \to \infty} a_n = 0$} + \end{center} + + Dann ist die Reihe $\displaystyle \sum\limits_{n = 0}^\infty (-1)^n a_n$ konvergent. + + + \subsection{Standard Reihenabschätzung} + + \begin{center} + \eqbox{$\displaystyle \left| \sum\limits_{k = 1}^n a_k \right| \leq n \cdot \max\limits_{1 \leq k \leq n} | a_k |$} + \end{center} + + + \subsection{Geometrische Reihe} + + Die Geometrische Reihe ist für $|z| < 1$ konvergent und es gilt: + + \begin{center} + \eqboxf{$\displaystyle\sum\limits_{k = 0}^\infty z^k = \dfrac{1}{1-z}$} \qquad\qquad \eqbox{$\displaystyle\sum\limits_{k = 0}^n z^k = \dfrac{1 - z^{n + 1}}{1 - z}$} + \end{center} + + + \subsection{Wichtige Reihen} + + \begin{tabular}{r c l} \toprule + Harmonische Reihe: & \hspace*{-10pt} $\displaystyle\sum\limits^\infty_{k = 1} \dfrac{1}{k}$ & divergent \\ + Riemann'sche $\zeta$-Funkt.: & \hspace*{-10pt} $\displaystyle\zeta(s) =\sum\limits^\infty_{k = 1} \dfrac{1}{k^s}$ & $\begin{cases} 0 < s \leq 1 & \text{divergent} \\ 1 < s & \text{konvergent}\end{cases}$ \\ + \bottomrule + \end{tabular} + + + \subsection{Wichtige Potenzreihen} + + Folgende Funktionen besitzen für alle $z \in \C$ konvergente Potenzreihen: + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \begin{tabular}{r l} + $\exp(z)$ & \hspace*{-10pt}$ := \displaystyle\sum\limits_{n = 0}^\infty \dfrac{z^n}{n!}$ \\ + $\sin(z)$ & \hspace*{-10pt}$:= \displaystyle\sum\limits_{n = 0}^\infty (-1)^n \dfrac{z^{2n+1}}{(2n+1)!}$ \\ + $\cos(z)$ & \hspace*{-10pt}$:= \displaystyle\sum\limits_{n = 0}^\infty (-1)^n \dfrac{z^{2n}}{(2n)!}$ \\ + \end{tabular} + \end{center} + \end{minipage} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \begin{tabular}{r l} + $\sinh(z)$ & \hspace*{-10pt}$:= \displaystyle\sum\limits_{n = 0}^\infty \dfrac{z^{2n+1}}{(2n+1)!}$ \\ + $\cosh(z)$ & \hspace*{-10pt}$:= \displaystyle\sum\limits_{n = 0}^\infty \dfrac{z^{2n}}{(2n)!}$ \\ + \end{tabular} + \end{center} + \end{minipage} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Potenzreihen} + + Sei $z \in \C$. Eine Reihe der folgenden Form nennt man eine Potenzreihe: + + \begin{center} + \eqbox{$\displaystyle p(z) := c_0 + c_1 z + c_2 z^2 + \dots = \sum\limits_{k = 0}^\infty c_k z^k$} + \end{center} + + \subsubsection{Konvergenzradius} + + Eine Potenzreihe ist konvergent für alle $|z| < \rho$ und es gilt: + + \begin{center} + \eqboxf{$\rho := \dfrac{1}{\limsup\limits_{k \to \infty} \sqrt[k]{|c_k|}}$} $\begin{cases} + |z| < \rho & \text{konvergiert absolut} \\ + |z| = \rho & \text{keine Aussage} \\ + |z| > \rho & \text{divergiert} \\ + \end{cases}$ + \end{center} + + Innerhalb von $\rho$ darf man Limes, Ableitung, Integral austauschen! + + + \subsubsection{Potenzreihen konvergieren gleichmässig} + + Sei eine Potenzreihe $p(z)$ mit Konvergenzradius $\rho > 0$. Dann konvergiert + + \begin{center} + \eqbox{$\displaystyle p_n(z) = \sum\limits_{k = 0}^{n - 1} a_k z^k$} + \end{center} + + gleichmässig gegen $p(z)$ auf $B_r(0)$ für jedes $r < p$. + + + \subsubsection{Potenzreihen sind stetig} + + Potenzreihen sind \emph{stetig} im Inneren ihres Konvergenzradius $\rho$. + + + \subsubsection{Potenzreihen sind differenzierbar} + + Eine Potenzreihe $f(x) = \sum\limits_{k = 0}^{\infty} a_k x^k$ ist im Inneren ihres Konvergenzradius \emph{gliedweise} differenzierbar. Die Ableitung von $f(x)$ ist + + \begin{center} + \eqbox{$\displaystyle f'(x) = \sum\limits_{k = 1}^{\infty} k a_k x^{k - 1}$} + \end{center} + + Ausserdem bestizt die Ableitung $f'(x)$ den \emph{gleichen} Konvergenzradius. \medskip + + \textbf{Achtung}: Oft ist es sinnvoll die Ableitungen der einzelnen Potenzen kurz anzuschauen, damit man die Formel nicht falsch anwendet! + + + \subsubsection{Potenzreihen sind integrierbar} + + Eine Potenzreihen $f(x) = \sum\limits_{k = 0}^{\infty} a_k x^k$ ist innerhalb ihres Konvergenzradius \emph{gliedweise} integrierbar. Das Integral von $f(x)$ ist + + \begin{center} + \eqbox{$\displaystyle \int\limits f(x) dx = \sum\limits_{k = 0}^{\infty} \dfrac{a_k}{k + 1} x^{k + 1}$} + \end{center} + + und die Stammfunktion $F(x)$ besitzt den \emph{gleichen} Konvergenzradius $\rho$. \medskip + + \textbf{Achtung}: Oft ist es sinnvoll das Integral mit den einzelnen Potenzen kurz anzuschauen, damit man die Formel nicht falsch anwendet! + \vfill\null + \columnbreak + + + \subsection{Wichtige Grenzwerte} + + \begin{center} + \renewcommand{\arraystretch}{2} + \begin{tabular}{l l l l l} \toprule + $\lim\limits_{n \to \infty} (1 + \frac{1}{n})^n$ & \hspace*{-10pt} $= e$ & \hspace*{+10pt} + $\lim\limits_{n \to \infty} (1 + \frac{a}{n})^n$ & \hspace*{-10pt}$= e^a$ \\ + $\lim\limits_{n \to \infty} n ( a^{\frac{1}{n}} - 1)$ & \hspace*{-10pt}$= \log(a)$ & \hspace*{+10pt} + $\lim\limits_{n \to 0} \frac{a^n - 1}{n}$ & \hspace*{-10pt}$= \log(a)$ \\ + $\lim\limits_{n \to \infty} \sqrt[n]{n}$ & \hspace*{-10pt}$= 1$ & \hspace*{+10pt} \\ + \midrule + $\lim\limits_{t \to \infty} t \sin(\frac{1}{t})$ & \hspace*{-10pt}$= 1$ & \hspace*{+10pt} + $\lim\limits_{t \to 0} \frac{\sin(t)}{t}$ & \hspace*{-10pt}$= 1$ \\ + $\lim\limits_{t \to \infty} t \log(1 + \frac{1}{t})$ & \hspace*{-10pt}$= 1$ & \hspace*{+10pt} + $\lim\limits_{t \to 0} \frac{\log(1 + t)}{t}$ & \hspace*{-10pt}$= 1$ \\ + $\lim\limits_{t \to \infty} \frac{1}{t^2(1 - \cos(\frac{1}{t}))}$ & \hspace*{-10pt}$= 1$ & \hspace*{+10pt} + $\lim\limits_{t \to 0} \frac{t^2}{1 - \cos(t)}$ & \hspace*{-10pt}$= 2$ \\ + $\lim\limits_{t \to \infty} \frac{1}{t \sin(\frac{1}{t})}$ & \hspace*{-10pt}$= 1$ & \hspace*{+10pt} + $\lim\limits_{t \to 0} \frac{t}{\sin(t)}$ & \hspace*{-10pt}$= 1$ \\ + $\lim\limits_{t \to 0} \frac{e^t - 1}{t}$ & \hspace*{-10pt}$= 1$ & \hspace*{+10pt} + $\lim\limits_{t \to 0} \frac{\log(1 + 2t)}{\log(1 + t)}$ & \hspace*{-10pt}$= 2$ \\ + \bottomrule + \end{tabular} + \end{center} + + + \subsection{Tipps Grenzwertberechnung} + + Verschiedene mögliche Ansätze: + + \begin{itemize} + \item Bei Grenzwerten, welche eingesetzt $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ geben, L'hopital anwenden! + \item Wurzelterme: 3te Binomische Formel versuchen + \item Schwieriger $\lim\limits_{n \to 0} (\dots)$ : Taylorformel mit Entwicklungspunkt $0$ benutzen (getrennt für Nenner und Zähler anwenden!!!). Dies funktioniert, da die Approximation im Entwicklungspunkt exakt ist. + \item Grenzwerten mit vielen Funktionen: So umformen zu versuchen, dass man die Grenzwerte unter 'Wichtige Grenzwerte' verwenden kann! + \begin{itemize} + \item Bei $\lim\limits_{n \to \infty} (\dots)^n$ muss man fast immer ausschliesslich $e^{n \cdot log(\dots)}$ als erste Umformung benutzen! + \end{itemize} + \end{itemize} + + \subsubsection{Grenzwert und Kompositionen stetiger Funktionen} + + Wird der Grenzwert einer Komposition stetiger Funktionen genommen, so darf man den Grenzwert auf die innere Funktion anwenden. Beispiel: + + \begin{center} + $\lim\limits_{x \to 0} \exp(\frac{1}{x}\log(\cos(x))) = \exp(\lim\limits_{x \to 0} \frac{1}{x}\log(\cos(x)) )$ + \end{center} + \vfill\null + \pagebreak + + + + \section{Stetigkeit auf $\R$ und $\R^d$} + + + \subsection{Grenzwert einer Funktion} + + \subsubsection{Der Abschluss} + + Sei $\Omega \in \R^d$. Der Abschluss von $\Omega$ ist die Menge: + + \begin{center} + \eqbox{$\overline{\Omega} = \{x \in \R^d; \exists (x_k)_{k \in \N} \subset \Omega, \, \lim\limits_{k \to \infty} x_k = x \}$} + \end{center} + + In Worten formuliert: Der Abschluss sind alle Punkte $x_0$, die durch Punkte in $\Omega$ erreichbar sind. \medskip + + Bem: Offenbar gilt $\Omega \subset \overline{\Omega}$. + + \subsubsection{Definition: Grenzwert einer Funktion} + + Sei $\Omega \subset \R^d$, $f: \Omega \to \R^n$ und $x_0 \in \overline{\Omega}$. $f$ hat an der Stelle $x_0$ den \emph{Grenzwert} $a \in \R^n$, falls für jede Folge $(x_k)_{k \in \N}$ in $\Omega$ mit + + \begin{center} + $x_k \xrightarrow[]{k \to \infty} x_0$ gilt $f(x_k) \xrightarrow[]{k \to \infty} a$. + \end{center} + + Ist dies der Fall und $x_0 \in \Omega$, dann muss gelten $\lim\limits_{x \to x_0} f(x) = f(x_0)$. + + \subsubsection{Stetig in $x_0$ und stetig ergänzbar} + + Sei $\Omega \subset \R^d$, $f: \Omega \to \R^n$. Man sagt: \medskip + + i) Sei $x_0 \in \Omega$. $f$ ist \emph{stetig} in $x_0$, falls $f$ in $x_0$ einen Grenzwert besitzt. \medskip + + ii) Sei $x_0 \in \overline{\Omega} \setminus \Omega$. $f$ heisst an der Stelle $x_0$ \emph{stetig ergänzbar}, falls $f$ in $x_0$ einen Grenzwert besitzt. Notation: $\lim\limits_{k \to \infty} f(x_k) = a \, \Leftrightarrow \, \lim\limits_{\substack{x \to x_0 \\ x \neq x_0}} = a$ + + + \subsection{Für $\R$: Links- und Rechtsseitiger Grenzwert} + + \begin{center} + \begin{minipage}{0.48\linewidth} + Nähert man sich von Links an $x_0$ an, d.h. $x < x_0$ dann gilt: + + \begin{center} + \eqbox{$f(x_0^-) := \lim\limits_{x \to x_0^-} f(x)$} + \end{center} + \end{minipage}\,\, + \begin{minipage}{0.48\linewidth} + Nähert man sich von Rechts an $x_0$ an, d.h. $x > x_0$ dann gilt: + + \begin{center} + \eqbox{$f(x_0^+) := \lim\limits_{x \to x_0^+} f(x)$} + \end{center} + \end{minipage} + \end{center} + + $f$ ist stetig an der Stelle $x_0$ genau dann, wenn $f(x_0^-) = f(x_0^+) = f(x_0)$. + + \subsubsection{Satz} + + Sei $]a,b[ \to \R$ monoton wachsend oder monoton fallend. Dann existieren für jedes $x_0 \in ]a,b[$ die links- und rechtsseitigen Grenzwerte. + + + \subsection{Für $\R$: Monotonie bei Funktionen} + + $f:[a,b] \to \R$ heisst streng monoton wachsend, falls gilt + + \begin{center} + \eqbox{$a \leq x < y \leq b \Rightarrow f(x) < f(y)$} + \end{center} + + $f:[a,b] \to \R$ heisst streng monoton fallend, falls gilt + + \begin{center} + \eqbox{$a \leq x < y \leq b \Rightarrow f(x) > f(y)$} + \end{center} + + + \subsection{Für $\R^d$: Grenzwert in $\R^d$} + + Sei $(x_k)_{k \in \N} \in \R^d$. Die Folge $x_k$ konvergiert gegen $x$, falls + + \begin{center} + \eqbox{$\lim\limits_{k \to \infty} ||x_k - x|| = 0 \, \Leftrightarrow \, \lim\limits_{k \to \infty} x_k^j = x^j$} + \end{center} + + wobei $x_k = (x^1_k, \dots, x^d_k)$ und $x = (x^1, \dots, x^d)$ beide in $\R^d$ definiert sind. + \vfill\null + \columnbreak + + + \subsection{Stetige Funktionen} + + Sei $\Omega \subset \R^d$, $f: \Omega \to \R^n$. Dann sagt man: + + \begin{center} + $f$ heisst \textbf{stetig auf} $\Omega \subset \R$, falls $f$ in jedem Punkt $x_0 \in \Omega$ stetig ist. + \end{center} + + \subsubsection{Satz: Vektorraum $C^0(\Omega, \R)$} + + Sei $\alpha, \beta \in \R$ und $f,g: \Omega \subset \R^d \to \R^n$ stetig. Dann ist $\alpha f + \beta g$ auch stetig. Die stetigen Funktionen $f: \Omega \to \R^n$ bilden also einen $\R$-Vektorraum. + + \begin{center} + Notation: \eqbox{$C^0(\Omega, \R) = \{ f: \Omega \to \R^n; f \text{ ist stetig} \}$} + \end{center} + + \subsubsection{Satz} + + Sind $f,g \in C^0(\Omega \subset \R^d, \R^n)$. So ist auch $f \circ g \in C^0(\Omega \subset \R^d, \R^n)$. + + + \subsection{Lipschitz stetig} + + Sei $f: \Omega \subset \R^d \to \R^n$. $f$ heisst \emph{L-Lipschitz stetig} mit der Lipschitzkonstante $0 \leq L$, falls + + \begin{center} + \eqbox{$\forall \vect{x},\vect{y} \in \Omega$ gilt $||f(\vect{x}) - f(\vect{y}) || \leq L \cdot || \vect{x} - \vect{y} ||$} + \end{center} + + Bemerkung: Lipschitz stetig $\Rightarrow$ Gleichmässig stetig $\Rightarrow$ $f$ ist stetig + + + \subsubsection{Satz} + + $f: \Omega \subset \R^d \to \R^n$ \emph{L-Lipschitz stetig} $\Rightarrow$ $f$ ist stetig ergänzbar in $x_0 \in \overline{\Omega}$. + + + \subsection{Kompakt} + + $K \subset \R^d$ heisst kompakt, falls jede Folge $(x_k)_{k \in \N} \subset K$ einen Häufungs-punkt in $K$ besitzt. Ausserdem gilt folgende Äquivalenz: + + \begin{center} + \eqbox{K kompakt $\Leftrightarrow$ $K$ ist beschränkt und abgeschlossen.} + \end{center} + + Bem: Das eine Menge nicht Kompakt ist, zeigt man am besten, indem man eine unbeschränkte Folge findet (Folge ohne HP). + + + \subsubsection{Lemma} + + Sei $K \subset \R$ kompakt. Dann ist $K$ beschränkt und es $\exists a,b \in K$ mit + + \begin{center} + \eqbox{$-\infty < a = \inf(K) = \min(K) \qquad\quad \max(K) = \sup(K) = b < \infty$} + \end{center} + + + \subsubsection{Satz: Extremumsatz} + + Sei $K \subset \R^d$ kompakt, $f: K \to \R^n$ stetig. Dann ist auch das Bild der Funktion $f: K \to \R^n$ kompakt. Insbesondere gilt: + + \begin{center} + \eqboxf{$f: K \to \R^n$ nimmt ihr \emph{Maximum und Minimum} auf $K$ an} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Für $\R$: Weierstrass'sches Kriterium für Stetigkeit} + %jelkeismygirlfriend and i love her very much, she a cutie + + $f: \Omega \in \R$ ist an der Stelle $x_0$ stetig \emph{genau dann, wenn} + + \begin{center} + \eqboxf{$\forall \epsilon > 0 \,\, \exists \delta > 0 \text{ s.d. } \forall x \in \Omega: \, |x - x_0| < \delta \Rightarrow ||f(x) - f(x_0) || < \epsilon$} + \end{center} + + \begin{center} + \includegraphics[width=0.75\linewidth]{Bilder/Delta_Epsilon_Kriterium.png} + \end{center} + + + \subsection{Für $\R$: Der Zwischenwertsatz} + + Sei $a < b$, $f:[a,b] \to \R$ stetig. Dann gilt + + \begin{center} + \eqboxf{$\forall y \in [f(a),f(b)] \,\, \exists x \in [a,b]$ mit $f(x) = y$} + \end{center} + + In Worten: ''Das Bild einer stetigen Funktion, die auf einem Intervall definiert ist, ist ein Intervall.'' + + \subsubsection{Satz} + + Sei $f: [a,b] \to \R$ stetig und streng monoton wachsend/fallend. Setze $f(a) = c$ und $f(b) = d$. Dann gilt + + \begin{center} + $f:[a,b] \to [c,d]$ ist bijektiv, und $f^{-1}$ ist stetig sowie streng monoton wachsend/fallend + \end{center} + + + \subsubsection{Satz} + + Sei $f:]a,b[ \to \R$ stetig und streng monoton wachsend/fallend mit + + \begin{center} + $-\infty \leq c:= \lim\limits_{x \to a^+} f(x) < \lim\limits_{x \to b^-} f(x) =: d \leq \infty$ + \end{center} + + Dann ist $f:]a,b[ \to ]c,d[$ bijektiv, und $f^{-1}$ ist stetig sowie streng monoton wachsend/fallend. + + + \subsection{Gleichmässige Stetigkeit} + + Sei $\Omega \subset \R^d$. $f: \Omega \to \R^n$ heisst gleichmässig stetig, falls gilt: + + \begin{center} + \eqbox{$\forall \epsilon > 0 \,\, \exists \delta > 0 \text{ s.d. } \forall x,y \in \Omega: \, |x - y| \leq \delta \Rightarrow || f(x) - f(y) || < \epsilon$} + \end{center} + + Bemerkung: Lipschitz stetig $\Rightarrow$ Gleichmässig stetig $\Rightarrow$ $f$ ist stetig + + \subsubsection{Satz} + + Sei $f: \Omega \subset \R^d \to \R^n$ gleichmässig stetig $\Rightarrow$ $f$ ist beschränkt auf $\Omega$. + + \subsubsection{Sätze} + + i) Sei $K \subset \R^d$ kompakt und $f \in C^0(K, \R^n) \Rightarrow f$ ist gleichmässig stetig. \medskip + + ii) Sei $f: \Omega \to \R^n$ gleichmässig stetig $\Rightarrow$ $f$ ist auf $\overline{\Omega}$ stetig ergänzbar. \medskip + + iii) Sei $\Omega \subset \R^d$ beschränkt, $f: \Omega \to \R^n$ stetig und auf $\overline{\Omega}$ stetig ergänzbar. $\Rightarrow$ $f$ ist gleichmässig stetig. + \vfill\null + \columnbreak + + + \subsection{Punktweise und gleichmässige Konvergenz} + + + \subsubsection{Supremumsnorm} + + Sei $f \in C^0(\Omega, \R^n)$. Dann ist die Supremumsnorm + + \begin{center} + \eqbox{$||f||_{C^0} := \sup\limits_{x \in \Omega}|| f(x)|| < \infty$} + \end{center} + + + \subsubsection{Punktweise Konvergenz} + + Sei $\Omega \subset \R^d$, und $f, f_k: \Omega \to \R^n,\, k \in \N$. Die Folge $(f_k)_{k \in \N}$ konvergiert punktweise gegen $f$, falls + + \begin{center} + \eqbox{$\forall x \in \Omega: \,\lim\limits_{k \to \infty} f_k(x) = f(x)$} + \end{center} + + + \subsubsection{Gleichmässige Konvergenz} + + Sei $\Omega \subset \R^d$, und $f, f_k: \Omega \to \R^n,\, k \in \N$. Die Folge $(f_k)_{k \in \N}$ konvergiert gleichmässig gegen $f$, falls + + \begin{center} + \eqboxf{$\lim\limits_{k \to \infty} \sup\limits_{x \in \Omega} || f_k(x) - f(x) || = 0$} + \end{center} + + Bemerkung: Gleichmässige Konvergenz $\Rightarrow$ Punktweise Konvergenz + + \subsubsection{Satz} + + Sei $f_k \in C^0(\Omega, \R^n)$ und $f_k$ konvergiert gleichmässig $\Rightarrow$ $f$ ist auf $\Omega$ stetig. + + + \subsection{Einschub: De Morgansche Regeln} + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \eqbox{$(A_1 \cup A_2)^C = A_1^c \cap A_2^c$} + \end{center} + \end{minipage} + \begin{minipage}{0.47 \linewidth} + \begin{center} + \eqbox{$(A_1 \cap A_2)^C = A_1^c \cup A_2^c$} + \end{center} + \end{minipage} + \end{center} + + + \vfill\null + \columnbreak + + + + \section{Topologie} + + + \subsection{Offene Mengen} + + \subsubsection{Der offene Ball} + + Sei $x_0 \in \R^d$ mit $r > 0$. Der offene Ball mit Radius $r$ und Zentrum $x_0$ ist + + \begin{center} + \eqbox{$B_r(x_0) := \{x \in \R^d; ||x - x_0|| < r\}$} + \end{center} + + \subsubsection{Definition: Offene Menge und Innerer Punkt} + + Ein Punkt $x_0 \in \Omega$ heisst \emph{innerer Punkt} von der Menge $\Omega$, falls + + \begin{center} + \eqboxf{$\exists r > 0: B_r(x_0) \subset \Omega$} + \end{center} + + Die Menge $\Omega \subset \R^d$ heisst \textbf{offen}, falls jedes $x_0 \in \Omega$ ein innerer Punkt ist. + + + \subsubsection{Satz: Eigenschaften offener Mengen} + + Es gelten folgenden Eigenschaften für offene Mengen: \medskip + + i) $\Omega_1, \Omega_2 \subset \R^d$ offen $\Rightarrow$ Schnittmenge $\Omega_1 \cap \Omega_2$ ist offen. \medskip + + ii) $\Omega_l \subset \R^d$ offen, $l \in I$ $\Rightarrow$ $\bigcup\limits_{i \in I} \Omega_l$ offen. + + iii) Endliche offene Mengen $(A_i)_{i \in I} \Rightarrow \bigcap\limits_{i \in I} A_i$ offen. + + + \subsection{Abgechlossene Mengen} + + Eine Menge $A \subset \R^d$ heisst \textbf{abgeschlossen}, falls das Komplement $A^C = \R^d \setminus A$ offen ist. + + \subsubsection{Satz: Eigenschaften abgeschlossener Mengen} + + i) $A_1, A_2$ abgeschlossen $\Rightarrow$ Vereinigungsmenge $A_1 \cup A_2$ abgeschlossen. \medskip + + ii) $A_l \subset \R^d$ abgeschlossen, $l \in I$ $\Rightarrow$ $\bigcap\limits_{i \in I} A_l$ abgeschlossen. \medskip + + iii) Endliche abgeschlossene Mengen $(A_i)_{i \in I} \Rightarrow \bigcup\limits_{i \in I} A_i$ abgeschlossen. + + + \subsubsection{Bemerkungen} + + i) Die zwei Mengen $\R^n, \, \emptyset$ sind sowohl offen, als auch abgeschlossen. \medskip + + ii) Es gibt Mengen, die weder offen noch abgeschlossen sind! + + + \subsection{Das Innere, der Abschluss und der Rand einer Menge} + + + \subsubsection{Das Innere} + + Die Menge der inneren Punkte von $\Omega$ + + \begin{center} + \eqbox{$int(\Omega) = \overset{\circ}{\Omega} := \{x \in \Omega; \exists r > 0$ s.d. $B_R(x) \subset \Omega \} = \bigcup\limits_{U \subset \Omega, \text{ U offen}} U$} + \end{center} + + heisst \textbf{offener Kern} oder das \textbf{Innere} von $\Omega$. + + + \subsubsection{Der Abschluss} + + Der \textbf{Abschluss} einer Menge ist + + \begin{center} + \eqbox{$clos(\Omega) = \overline{\Omega} := \bigcap\limits_{A \subset \Omega, \text{ A abgeschlossen}} A$} \medskip + + $\Leftrightarrow$ \eqbox{$\overline{\Omega} = \{x_0 \in \R^d; \, \exists (x_k)_{k \in \N} \subset \Omega, \, \lim\limits_{k \to \infty} x_k = x_0 \}$} + \end{center} + \vfill\null + \columnbreak + + + \subsubsection{Der Rand} + + Der \textbf{Rand} einer Menge ist + + \begin{center} + \eqbox{$\partial\Omega := \overline{\Omega} \setminus \overset{\circ}{\Omega} = \{x \in \R^d; \forall r > 0: B_r(x) \,\cap\, \Omega \neq \emptyset \neq B_r(x) \setminus \Omega\}$} + \end{center} + + + \subsubsection{Satz: Eigenschaften} + + i) Der Rand $\partial \Omega$ ist abgeschlossen. + + ii) Aus $\overset{\circ}{\Omega} \subseteq \Omega \subseteq \overline{\Omega}$ folgt $\overline{\Omega} = \overset{\circ}{\Omega} \cup \partial \Omega$ und die Zerlegung ist disjunkt. \medskip + + iii) Es folgt das Kriterium: \eqboxf{$\Omega$ abgeschlossen $\Leftrightarrow \Omega = \overline{\Omega} \Leftrightarrow \partial \Omega \subset \Omega$} + + iv) Es gilt ausserdem $\overline{\overline{\Omega}} = \overline{\Omega}$, sowie $\overset{\circ}{\overset{\circ}{\Omega}} = \overset{\circ}{\Omega}$ + + + \subsection{Topologisches Kriterium für Stetigkeit} + + Sei $\Omega \subset \R^d$, $x_0 \in \Omega$. Man sagt: + + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{minipage}{0.7\linewidth} + i) $U \subset \Omega$ heisst \textbf{Umgebung} von $x_0$ relativ zu $\Omega$, falls + + \begin{center} + \eqbox{$\exists r > 0 \,\text{ mit }\, (B_r(x_0) \cap \Omega) \subset U$} + \end{center} + \end{minipage} + \begin{minipage}{0.27\linewidth} + \begin{center} + \includegraphics[width = 1\linewidth]{Bilder/Umgebung.jpg} + \end{center} + \end{minipage} + \end{center} + + ii) Sei $E \subset \R^d$ offen. $U \subset \Omega$ heisst \textbf{relativ offen}, falls $U = E \cap \Omega$. \medskip + + iii) $A \subset \Omega$ heisst \textbf{relativ abgeschlossen}, falls $\Omega \setminus A$ relativ offen ist. + + + + + \subsubsection{Satz: Weierstrass'sches Kriterium für Stetigkeit} + % https://de.wikipedia.org/wiki/Stetige_Funktion#Stetigkeit_in_der_Topologie + + Sei $f: \Omega \subset \R^d \to \R^n$ und $x_0 \in \Omega$. Es sind äquivalent: + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r p{0.85\linewidth}} \toprule + & \hspace*{-10pt} $f$ ist an der Stelle $x_0$ stetig gemäss Folgekriterium. \\ + $\Leftrightarrow$ & \hspace*{-10pt} $\forall \epsilon > 0 \,\, \exists \delta > 0 \,\text{ s.d }\, \forall x \in \Omega: \, ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \epsilon$ \\ + $\Leftrightarrow$ & \hspace*{-10pt} Für jede Umgebung $V$ von $f(x_0)$ in $\R^n$ ist $U = f^{-1}(V)$ eine Umgebung von $x_0$ in $\Omega$. \\ + \bottomrule + \end{tabular} + \end{center} + + + \subsubsection{Topologisches Kriterium für Stetigkeit} + + Für $f: \Omega \to \R^n$ sind äquivalent: + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \eqboxf{\begin{tabular}{r p{0.8\linewidth}} + & \hspace*{-10pt} $f$ ist stetig ($f \in C^0$). \\ + + $\Leftrightarrow$ & \hspace*{-10pt} Das Urbild $U = f^{-1}(V)$ jeder offenen Menge $V \subset \R^n$ ist relativ offen. \\ + $\Leftrightarrow$ & \hspace*{-10pt} Das Urbild $A = f^{-1}(B)$ jeder abgeschlossene Menge $B \subset \R^n$ ist relativ abgeschlossen. \\ + \end{tabular}} + \end{center} + + \begin{center} + \includegraphics[width = 1\linewidth]{Bilder/TopoStetigkeit.png} + \end{center} + \vfill\null + \pagebreak + + + + \section{Differentialrechnung auf $\R$} + + \subsection{Differential} + + Sei $f: \Omega \to \R$ mit $\Omega \subset \R$ offen und $x_0 \in \Omega$. $f$ heisst \emph{differenzierbar} an der Stelle $x_0$ falls folgender Grenzwert exisitert: + + \begin{center} + \eqbox{$\dfrac{d f}{d x}(x_0) = f'(x_0) := \displaystyle \lim\limits_{h \to 0} \dfrac{f(x_0 + h) - f(x_0)}{h}$} + \end{center} + + $f'(x)$ heisst \emph{Ableitung} (oder Differential) von $f$ an der Stelle $x_0$. \medskip + + Bemerkung: Analoges gilt für $f: \Omega \to \R^n$ (Vektorwertige Funktion), einfach Komponentenweise. + + \subsubsection{Geometrische Bedeutung} + + i) Der Differentialquotient $\frac{f(x) - f(x_0)}{x - x_0}$ entspricht der Steigung der Sekante durch die Punkte $(x,f(x)), (x_0, f(x_0))$. \medskip + + ii) Die Ableitung $f'(x_0)$ entspricht der Steigung der Tangente im Punkt $(x_0,f(x_0))$. + + \subsubsection{Satz} + + $f: \Omega \to \R$ differenzierbar an der Stelle $x_0 \in \Omega$ $\Rightarrow$ $f$ ist stetig in $x_0$. + + \subsubsection{Eigenschaften des Differentials} + + Seien $f,g: \Omega \to \R$ an der Stelle $x_0 \in \Omega$ differenzierbar. Dann gilt + + \begin{center} + \renewcommand{\arraystretch}{1.75} + \begin{tabular}{r l} \toprule + Summenregel & $(f(x_0) + g(x_0))' = f'(x_0) + g'(x_0)$ \\ + Produktregel & $(f(x_0) \cdot g(x_0))' = f'(x_0) g(x_0) + f(x_0)g'(x_0)$ \\ + Quotientregel & $\left(\frac{f(x_0)}{g(x_0)}\right)' = \dfrac{f'(x_0) g(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}$ \\ + Kettenregel & $(g(x_0) \circ f(x_0))' = g'(f(x_0)) \cdot f'(x_0)$ \\ \bottomrule + \end{tabular} + \end{center} + + Bei der Quotientregel muss natürlich $g(x_0) \neq 0$ sein. + + + \subsection{Der Mittelwertsatz} + + Seien $-\infty < a < b < \infty$. Sei $f:[a,b] \to \R$ stetig und differenzierbar in $]a,b[$. Dann existiert $x_0 \in ]a,b[$ mit + + \begin{center} + $f(b) = f(a) + f'(x_0)(b - a)$ $\quad \Leftrightarrow \quad$ \eqboxf{$f'(x_0) = \dfrac{f(b) - f(a)}{b - a}$} + \end{center} + + \subsubsection{Korollar} + + Sei $f:[a,b] \to \R$ stetig und differenzierbar auf $]a,b[$. Dann gilt: + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + i) & Falls $f'(x) \equiv 0$ auf $]a,b[$, dann ist $f$ konstant \\ + ii) & Falls $f'(x) \geq 0$ auf $]a,b[$, dann ist $f$ monoton wachsend. \\ + iii) & Falls $f'(x) > 0$ auf $]a,b[$, dann ist $f$ streng monton wachsend. \\ + \bottomrule + \end{tabular} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Bernouilli de l'Hôpital} + + Seien $f,g: [a,b] \to \R$ stetig und differenzierbar in $]a,b[$. Sei $g'(x_0) \neq 0$ für alle $x \in ]a,b[$ und $f(a) = 0 = g(a)$ oder $f(a) = \pm \infty = g(a)$. Existiert + + \begin{center} + $\lim\limits_{x \to a^+} \dfrac{f'(x)}{g'(x)}$ + \end{center} + + Dann ist $g(x) \neq 0$ für alle $x > a$, und es gilt + + \begin{center} + \eqboxf{$\lim\limits_{x \to a^+} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a^+} \dfrac{f'(x)}{g'(x)}$} + \end{center} + + Existiert $\lim\limits_{x \to a^+} \frac{f'(x)}{g'(x)}$ nicht, so muss man nochmals l'Hôpital anwenden. + + + \subsection{Der Umkehrsatz} + + Sei $f:]a,b[ \to \R$ differenzierbar mit $f'(x) > 0$ auf $]a,b[$. Seien + + \begin{center} + $-\infty \leq c = \inf\limits_{a < x < b} f(x) < \sup\limits_{a < x < b} f(x) = d \leq \infty$ + \end{center} + + Dann ist $f:]a,b[\, \to \,]c,d[$ bijektiv und die Umkehrfunktion $f^{-1}:\,]c,d[\, \to \,]a,b[$ ist differenzierbar für $y \in ]c,d[$ und das Differential ist + + \begin{center} + \eqboxf{$(f^{-1})' (y) = \dfrac{1}{f'(f^{-1}(y))}$} + \end{center} + + + \subsection{Funktionen der Klasse $C^1$} + + Sei $\Omega$ ein offenes Intervall und $f: \Omega \to \R$ differenzierbar. $f$ heisst von der Klasse $C^1(\Omega, \R)$, falls die Ableitung $f'(x)$ stetig ist. Es gilt also + + \begin{center} + \eqbox{$C^1(\Omega, \R) = \{ f: \Omega \to \R; f, f' \text{ stetig} \}$} + \end{center} + + \subsubsection{Satz} + + Sei $(f_k)_{k \in \mathbb{N}}$ eine Folge von Funktionen in $C^1(\Omega, \R)$ mit + + \begin{center} + $f_k \xrightarrow[]{glm} f, f'_k \xrightarrow[]{glm} g \quad (k \to \infty)$ + \end{center} + + wobei $f, g: \Omega \to \R$. Dann gilt $f \in C^1(\Omega, \R)$ und $f' = g$. + + + \subsection{Höhere Ableitungen} + + Sei $m \in \N$. $f$ heisst auf $\Omega$ m-Mal differenzierbar, falls die $m$-te Ableitung von $f$ existiert und wird folgendermassen notiert: + + \begin{center} + $f^{(m)} = \dfrac{d^m f}{d x^m}$ + \end{center} + + \subsubsection{Funktionen der Klasse $C^m$} + + Sei $\Omega$ ein offenes Intervall und $f: \Omega \to \R^n$ $m$-Mal differenzierbar. $f$ heisst von der Klasse $C^m(\Omega, \R)$, falls $f^m(x)$ stetig ist. Es gilt also + + \begin{center} + \eqbox{$C^m(\Omega, \R) = \{ f: \Omega \to \R; f \text{ ist \emph{m}-mal diffbar, } f, \dots, f^{(m)} \text{ stetig} \}$} + \end{center} + + Bemerkung: Falls $f \in C^m(\Omega, \R)$ für alle $m \in \mathbb{N}$, dann schreibt man $f \in C^\infty(\Omega, \R)$. Solche Funktionen nennt man ''Glatte Funktionen''. + \vfill\null + \columnbreak + + + \subsection{Taylor Entwicklung} + %Mehr Infos: https://brilliant.org/wiki/taylor-series-error-bounds/ + + %Gutes Bild: Vorlesung 27.04.23 @11min + + Sei $f \in C^{(m+1)}([a,b], \R)$ auf $]a,b[$ $m$-Mal differenzierbar. Die Taylorentwicklung $m$-ter Ordnung von $f$ am Entwicklungspunkt $a$ ist + + \begin{center} + \eqboxf{$\displaystyle T_m f(x; a) = \sum\limits_{k = 0}^m f^{(k)} (a) \dfrac{(x - a)^k}{k!} + \underbrace{f^{(m+1)}(\xi) \dfrac{(x - a)^{m+1}}{(m+1)!}}_{\text{Restterm}}$} + \end{center} + + Wobei $\xi \in \,]a,b[$ ist, d.h. eine beliebige Zahl im Definitionsbereich. + + \subsubsection{Beste Approximation} + + Je näher $x$ bei $a$ liegt, desto besser approximiert das Taylorpolynom $T_m f(x; a)$ an der Stelle $x$ die Funktion $f$. Für $a < x < b$ gilt + + \begin{center} + \eqbox{$\lim\limits_{x \to a} \dfrac{f(x) - T_m f(x,a)}{(x - a)^m} = 0$} + \end{center} + + \subsubsection{Abschätzung vom Restterm} + + Der Restterm $r_m f(x;a)$ besitzt folgende Abschätzung: + + \begin{center} + \eqbox{$|r_mf(x,a)| \leq \sup\limits_{a < \xi < x} |f^{(m+1)}(\xi)| \dfrac{(x - a)^{m + 1}}{(m + 1)!}$} + \end{center} + + + \subsection{Lokale Extrema} + + Sei $\Omega \subset \R$ offen und $f: \Omega \to \R$. Ein $x_0 \in \Omega$ heisst (\emph{strikte}) lokale Minimalstelle von $f$, falls in einer Umgebung $U$ von $x_0$ gilt + + \begin{center} + $f(x) \geq f(x_0), \, \forall x \in U$ \,\, (bzw. $f(x) > f(x_0), \, \forall x \in U\setminus \{x_0\}$) + \end{center} + + Analoges gilt für lokale Maximastellen. + + \subsubsection{Satz} + + Sei $\Omega \subset \R$ offen, $f \in C^2(\Omega, \R)$ und $x_0 \in \Omega$. Es gilt folgendes: + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + i) & Wenn $f'(x_0) = 0 \, \Rightarrow x_0$ ist ein lokales Extrema. \\ + ii) & Sind $f'(x_0) = 0$ und $f''(x_0) > 0 \, \Rightarrow$ $x_0$ ein lokales Minimum. \\ + iii) & Sind $f'(x_0) = 0$ und $f''(x_0) < 0 \, \Rightarrow$ $x_0$ ein lokales Maximum. \\ + \bottomrule + \end{tabular} + \end{center} + + \textbf{Achtung}: Randpunkte vom Definitionsbereich nicht vergessen! + + \subsubsection{Allgemeinerer Satz} + + Sei $f \in \C^n(\Omega, \R)$ mit $f'(x_0) = \dots = f^{(n-1)}(x_0) = 0$ und $f^{(n)}(x_0) \neq 0$. + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \begin{tabular}{r l} \toprule + i) & Ist $n$ gerade sowie $f^{(n)}(x_0) > 0$ $\,\Rightarrow$ $x_0$ ein lokales Minimum. \\ + ii) & Ist $n$ gerade sowie $f^{(n)}(x_0) < 0$ $\,\Rightarrow$ $x_0$ ein lokales Maximum. \\ + iii) & Ist $n$ ungerade, so hat $f$ bei $x_0$ einen Wendepunkt. \\ + \bottomrule + \end{tabular} + \end{center} + + + \subsection{Konvexe Funktionen} + + Sei $f \in C^2(]a,b[, \R)$ mit $f'' \geq 0$. Ein Funktion $f$ heisst \emph{konvex}, falls für alle $x_0, x_1 \in \, ]a,b[$ und für alle $t \in [0,1]$ gilt: + + \begin{center} + \eqbox{$f(t \cdot x_1 + (1 - t)\cdot x_0) \leq t \cdot f(x_1) + (1 - t) \cdot f(x_0)$} + \end{center} + + Die Funktionen für welche dies gilt heissen Konvex. \medskip + + Bemerkung: Wenn $f''(x) > 0$ $\Rightarrow$ $f(x)$ ist konvex. + \vfill\null + \columnbreak + + + \pagebreak + + + \section{Integralrechnung auf $\R$} + + + \subsection{Stammfunktionen (SF)} + + $F \in C^1(]a,b[)$ heisst Stammfunktion zu $f$, falls für alle $x \in ]a,b[$ gilt: + + \begin{center} + \eqbox{$\displaystyle \int f(x) dx = F(x)$ \qquad $F'(x) = f(x)$} + \end{center} + + + \subsubsection{Satz: Integrationskonstante} + + Zwei Stammfunktionen $F_1, F_2 \in C^1(]a,b[)$ einer Funktion unterscheiden sich nur durch eine Integrationskonstante voneinander: $F_1 - F_2 \equiv c \in \R$ + + + \subsubsection{Das Integral} + + Sei $F \in C^1(]a,b[,\R)$ eine SF von $f$. Das Integral von $f$ über $[a, b]$ ist: + + \begin{center} + \eqbox{$\displaystyle \int\limits_{a}^b f(t) dt := F(b)-F(a)$} + \end{center} + + + \subsection{Eigenschaften vom Integral (und R-Integral)} + + \subsubsection{Linearität} + + Seien $f,g \in C^0(]a,b[)$ mit SFs $F,G \in C^1(]a,b[)$, und $\alpha, \beta \in \R$. Dann gilt + + \begin{center} + \eqbox{$\displaystyle \int [\alpha \cdot f(x) + \beta \cdot g(x)] dx = \alpha \cdot \int f(x) dx + \beta \cdot \int g(x) dx$} + \end{center} + + + \subsubsection{Monotonie} + + Seien $f,g \in C^0(]a,b[)$ mit SFs $F,G \in C^1(]a,b[)$, und $f \leq g$. Dann gilt + + \begin{center} + \eqbox{$\displaystyle \int\limits_{x_0}^{x_1} f(t) dt \leq \int\limits_{x_0}^{x_1} g(t) dt$} + \end{center} + + + \subsubsection{Gebietsadditivität} + + Sei $f \in C^0(]a,b[)$ mit SF $F \in C^1(]a,b[)$. Für $a < x_0 \leq x_1 \leq x_2 < b$ gilt: + + \begin{center} + \eqbox{$\displaystyle \int\limits_{x_0}^{x_1} f(x) dx + \int\limits_{x_1}^{x_2} f(x) dx = \int\limits_{x_0}^{x_2} f(x) dx$} + \end{center} + + \subsubsection{Standardabschätzung} + + Sei $f \in C^0([a,b])$. Dann gilt folgende Abschätzung + + \begin{center} + \eqbox{$\displaystyle \left| \int\limits_a^b f(x) dx \right| \leq \int\limits_a^b |f(x)| dx \leq ||f(x)||_{C^0} (b - a)$} + \end{center} + + \subsubsection{Korollar bezüglich glm. Konveregenz} + + Seien $f, f_k \in C^0([a,b])$ mit $f_k \xrightarrow[]{glm} f \, (k \to \infty)$. Dann gilt + + \begin{center} + \eqbox{\hspace*{-5pt}$\displaystyle \left| \int\limits_a^b f_k dx - \int\limits_a^b f dx \right| \leq \int\limits_a^b |f_k - f| dx \leq (b - a) \, || f_k - f||_{C^0} \to 0 (k \to \infty)$\hspace*{-5pt}} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Treppenfunktionen} + + $f: [a,b] \to \R$ heisst Treppenfunktion, falls für eine Zerlegung $I = [a,b]$ in disjunkte (abgeschlossene, offene, halboffene) Teilintervalle $I_1, \dots, I_K$ mit dazugehörigen \emph{Konstanten} $c_k \in \R$ gilt: + + + \begin{minipage}{0.74\linewidth} + \begin{center} + \eqbox{$\displaystyle f(x) = \sum\limits_{k = 1}^K c_k \cdot \chi_{I_k}$ mit $\chi_{I_k}(x) = \begin{cases} + 1 & , x \in I_k \\ 0 & , x \not\in I_k \\ + \end{cases}$} + \end{center} + \end{minipage} + \begin{minipage}{0.25\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/RiemannSumme.png} + \end{center} + \end{minipage} + + + + Sei $|I_k|$ die Länge von $I_k$. Das Integral einer Treppenfunktion $f(x)$ ist + + \begin{center} + \eqbox{$\displaystyle \int\limits_{a}^{b} \left(\sum\limits_{k = 1}^K c_k \cdot \chi_{I_k}\right) dx = \sum\limits_{k = 1}^K c_k \cdot |I_k|$} + \end{center} + + \subsubsection{Lemma} + + Sind $e,g:[a,b] \to \R$ Treppenfunktionen mit $e \leq g$, dann gilt + + \begin{center} + $\int\limits_a^b e(x) dx \leq \int\limits_a^b g(x) dx$ + \end{center} + + + \subsection{Die Riemannsche Summe} + + Sei $f\in C^0([a,b])$. Dann gilt für eine beliebige Folge von disjunkte Zerlegung von $I$ in Teilintervalle $I_k^n, 1 \leq k \leq K_n$ mit \emph{Feinheit} + + \begin{center} + $\delta_n = \sup\limits_{1 \leq k \leq K_n} |I_k^n| \to 0 \quad (n \to \infty)$ + \end{center} + + und eine beliebigen Auswahl an Punkten $x_k^n \in I^n_k, \, 1 \leq k \leq K_n$, stets + + \begin{center} + \eqbox{$\displaystyle\int\limits_a^b \left( \sum\limits_{k = 1}^{K_n} f(x_k^n) \chi_{I_k^n}\right) dx = \sum\limits_{k = 1}^{K_n} f(x_k^n) | I_k^n | \to \int\limits_a^b f(x) dx \, (n \to \infty)$} + \end{center} + + + \subsection{Das Riemannsche Integral (R-Integral)} + + Sei $f:[a,b] \to \R$ beschränkt und seien $e(x),g(x)$ Treppenfunktionen. + + \begin{center} + Untere Riemann-Integral von $f$: \, \eqbox{$\displaystyle \underline{\int\limits_{a}^b} f(x) dx = \sup\limits_{e(x) \leq f(x)} \int\limits_a^b e(x) dx$} \medskip + + Obere Riemann-Integral von $f$: \eqbox{$\displaystyle \overline{\int\limits_a^b} f(x) dx = \inf\limits_{g(x) \geq f(x)} \int\limits_a^b g(x) dx$} + \end{center} + + Ein solches $f(x)$ heisst über $[a,b]$ Riemann-integrabel, falls + + \begin{minipage}{0.3\linewidth} + \begin{center} + \includegraphics[width=0.8\linewidth]{Bilder/R-Integral.png} + \end{center} + \end{minipage} + \begin{minipage}{0.69\linewidth} + \begin{center} + \eqbox{$\displaystyle \underline{\int\limits_{a}^b} f(x) dx = \overline{\int\limits_a^b} f(x) dx := \int\limits_a^b f(x) dx$} + \end{center} + \end{minipage} + + \subsubsection{Sätze} + + i) $f:[a,b] \to \R$ monoton, beschränkt $\Rightarrow f$ ist über $[a,b]$ R-integrabel. \medskip + + ii) $f:[a,b] \to \R$ stetig ($f \in C^0([a,b], \R)$) $\Rightarrow f$ ist über $[a,b]$ R-integrabel. + \vfill\null + \columnbreak + + + \subsection{Substitutionsregel} + + Seien $f,g \in C^1(]a,b[)$. Dann gilt für $a < x_0 < x_1 < b$: + + \begin{center} + \eqboxf{$\displaystyle \int\limits_{x_0}^{x_1} f'(\underbrace{g(x)}_{= u}) \cdot \underbrace{g'(x) dx}_{= d u} = \int\limits_{g(x_0)}^{g(x_1)} f'(u) du$} + \end{center} + + + \subsection{Partielle Integration} + + Seien $u,v \in C^1(]a,b[)$, so dass $u(x) \cdot v'(x)$ eine SF besitzt. Dann besitzt $u'(x) \cdot v(x)$ auch eine SF und es gilt + + \begin{center} + \eqboxf{$\displaystyle \int\limits_a^b u'(x) v(x) dx = [u(x)v(x)]_a^b - \int\limits_a^b u(x) v'(x) dx $} + \end{center} + + \subsubsection{Bei periodischen Funktion} + + Bei Partieller Integration von zwei periodischen Funktionen geht man eine Periode durch und sotiert dann das ''ursprüngliche Integral'' auf die Linke Seite und kann so, dass Integral berechnen. + + + \subsection{Hauptsatz der Differential- und Integralrechnung} + + Sei $f \in C^0([a,b], \R)$. So ist für jedes $c \in [a,b]$ die Integralfunktion + + \begin{center} + \eqbox{$\displaystyle F: [a,b] \to \R$ mit $\displaystyle F(x) = \int\limits_c^x f(t) dt$} + \end{center} + + differenzierbar und es gilt für alle $x \in [a,b]$: $F'(x) = f(x)$. + + \subsubsection{Anwendung: Parameterintegral} + + \begin{center} + $\displaystyle \frac{d}{dt} \int\limits_a^{h(t)} g(x) dx = \frac{d}{dt} [G(x)]^{h(t)}_{a} = g(h(t)) \cdot h'(t)$ + \end{center} + + + \subsection{Uneigentliches Riemann-Integral} + + Sei $f: ]a,b[ \to \R$ mit $-\infty \leq a < b \leq \infty$ über jedes kompakte Intervall $[c,d] \subset ]a,b[$ R-integrabel. $f$ ist über $]a,b[$ \emph{uneigentlich R-integrabel}, falls folgender Grenzwert existiert: + + \begin{center} + \eqbox{$\displaystyle \int\limits_{a}^b f(x) dx = \lim\limits_{c \to a^+} \int\limits_{c}^0 f(x) dx + \lim\limits_{d \to b^-} \int\limits_{0}^d f(x) dx$} + \end{center} + + \subsubsection{Satz: Reihenkonvergenz} + + Sei $f:[1, \infty) \to \R_+$ \emph{monoton fallend}. Dann gilt + + \begin{center} + \eqbox{$\displaystyle \sum\limits_{k = 1}^\infty f(x)$ konvergiert $\Leftrightarrow$ $\displaystyle \int\limits_1^\infty f(x) dx$ konvergiert} + \end{center} + \vfill\null +\end{multicols*} + +\begin{multicols*}{3} + \section{Gewöhnliche lineare Differentialgleichungen (GDG)} + + + \subsection{Differentialgleichungen 1ter Ordnung} + + \subsubsection{Homogene Lösung} + + Die Homogene Differentialgleichung 1ter Ordnung hat die Form: + + \begin{center} + \eqbox{$y'(x) - a(x) y(x) = 0$} + \end{center} + + Den Lösungsansatz nennt man \emph{Seperation der Variablen}: + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{r p{0.8\linewidth}} \toprule + i) & $y'(x) - a(x) y(x) = 0 \Leftrightarrow \dfrac{d y}{d x} = a(x) y(x)$ \\ + ii) & Umformen auf folgende Form: + + \begin{center} + $\frac{1}{y(x)} dy = a(x) dx$ + \end{center} \\ + iii) & Auf beiden Seiten integrieren: + + \begin{center} + $\displaystyle \int \frac{1}{y(x)} dy = \int a(x) dx \Rightarrow \log(y(x)) = A(x) + C$ + \end{center} \\ + iv) & Auf beide Seiten $e^x$ anwenden: + + \begin{center} + \eqboxf{$y_h(x) = e^{A(x)} \cdot C$} + \end{center} \\ + \bottomrule + \end{tabular} + \end{center} + + Bemerkung: $A(x)$ ist die SF von $a(x)$ und $C$ die Integrationskonstante. + + + \subsubsection{Inhomogene Differentialgleichungen 1ter Ordnung} + + Eine Inhomogene Differentialgleichung 1ter Ordnung hat die Form: + + \begin{center} + \eqbox{$y'(x) - a(x) y(x) = b(x)$} + \end{center} + + Den Lösungsansatz nennt man \emph{Variation der Konstanten}: + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{r p{0.8\linewidth}} \toprule + i) & Die homogene Lösung $y'(x) - a(x) y(x) = 0$ berechnen. \\ + ii) & Man macht den Ansatz, dass $C$ von $x$ abhängt: + + \begin{center} + $y_h(x) = C(x) \cdot e^{A(x)}$ + \end{center} \\ + iii) & Man berechnet $y_h'(x)$: + + \begin{center} + $y_h'(x) = C'(x)e^{A(x)} + C(x) a(x) e^{A(x)}$ + \end{center} \\ + iv) & $y_h'(x)$ und $y_h(x)$ in die ursprüngliche DGL einsetzen: + + \begin{center} + $C'(x)e^{A(x)} \underbrace{+ C(x) a(x) e^{A(x)} - C(x) a(x) e^{A(x)}}_{= 0} = b(x)$ + \end{center} \\ + v) & Gleichung umstellen und dann Integrieren: + + \begin{center} + $\displaystyle C'(x) = \dfrac{b(x)}{e^{A(x)}} \Rightarrow C(x) = \int \dfrac{b(x)}{e^{A(x)}} dx + K$ + \end{center} \\ + vi) & Gefundes $C(x)$ in $y_h(x) = C(x) \cdot e^{A(x)}$ einsetzen, dies ist die Lösung der inhomogenen Differentialgleichung. + \\ + \bottomrule + \end{tabular} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Homogene Systeme linearer Differentialgleichungen} + + Sei $F(t) \in \R^n$ und $A \in M_{n \times n}(\R)$. Folgende Gleichung + + \begin{center} + \eqbox{$\dfrac{d F(t)}{d t} = A \cdot F(t)$} + \end{center} + + ist die Standardform eines homogenen Systems linearer Differentialgleichungen mit konstanten Koeffizienten. + + \subsubsection{Existenz- und Eindeutigkeitssatz} + + Sei $F(t), F_0 \in \R^n$ und $A \in M_{n \times n}(\R)$. Das folgende \emph{Anfangswertproblem} + + \begin{center} + \eqbox{$\dfrac{d F}{d t} = A \cdot F(t), \quad F(0) = F_0$} + \end{center} + + besitzt \emph{genau} eine Lösung $F \in C^1(\R; \R^n)$. + + + \subsubsection{Die Fundamentallösung} + + Folgende Matrix-wertige Funktion $\Phi(t) \in C^1(\R, M_{n \times n} (\R))$ + + \begin{center} + \eqbox{$t \mapsto \Phi(t) := Exp(A t) = \sum\limits_{k = 0}^\infty \dfrac{A^k t^k}{k!}$} + \end{center} + + besitzt die erwünschten Eigenschaften + + \begin{center} + $\dfrac{d\Phi}{d} = A \cdot \Phi(t), \, \Phi(0) = id$ + \end{center} + + Sie heisst Fundamentallösung von dem System $\dot F = A F(t)$. + + + \subsubsection{Die Fundamentallösung einer diagonalisierbaren Matrix} + + Sei $A$ diagonalisierbar ($A$ ist ähnlich zu einer Diagonalmatrix), d.h.: + + \begin{center} + $A = T \begin{pmatrix} + \lambda_1 & & 0 \\ + & \ddots & \\ + 0 & & \lambda_n \\ + \end{pmatrix} T^{-1}$ \qquad \eqboxf{$\det(A - \lambda I) = 0$} + \end{center} + + Wobei $T$ die $n$ Eigenvektoren von $A$ als Spaltenvektoren enthält. \medskip + + In einem solchen Fall nimmt die Fundamentallösung folgende Form an: + + \begin{center} + \eqbox{$\Phi(t) = Exp(t A) = T \begin{pmatrix} + e^{t \lambda_1} & & 0 \\ + & \ddots & \\ + 0 & & e^{t \lambda_n} \\ + \end{pmatrix} T^{-1}$} + \end{center} + + Wir wissen ausserdem, dass alle Lösungen von folgender Form sind: + + \begin{center} + $\displaystyle F(t) = \sum\limits_{i = 1}^n B_i \cdot e^{\lambda_i t}$ + \end{center} + + wobei $B_i \in \R^n$. + \vfill\null + \columnbreak + + + \subsection{Reduktion der Ordnung} + + Die Allgemeine Form einer DGL n-ter Ordnung ist: + + \begin{center} + \eqbox{$f^{(n)} + a_{n-1} f^{(n-1)} + \dots +a_1 \dot f + a_0 f = 0$} + \end{center} + + Die Reduktion zu einem System 1.Ordnung ist: + + \begin{center} + $\underbrace{\begin{pmatrix} + \dot f \\ \ddot f \\ \vdots \\ f^{(n)} \\ + \end{pmatrix}}_{\dot F} = \underbrace{\begin{bmatrix} + 0 & 1 & & 0 \\ + \vdots & & \ddots & \\ + 0 & 0 & & 1 \quad \\ + -a_0 & -a_1 & \dots & -a_{n-1} \\ + \end{bmatrix}}_{A_{n \times n}} \underbrace{\begin{pmatrix} + f \\ \dot f \\ \vdots \\ f^{(n-1)} \\ + \end{pmatrix}}_{F(t)}$ + \end{center} + + + \subsection{Der Exponentialansatz} + + Wir wissen dank der Fundamentallösung, dass man Lösungen der Form + + \begin{center} + \eqbox{$f(t) = e^{\lambda t}$} \quad (wobei $\dot f = \lambda e^{\lambda t}, \dots, \, f^{(n)}(t) = \lambda^n e^{\lambda t}$) + \end{center} + + sucht. Setzt man diesen Lösungsansatz in die allgemeine Form ein + + \begin{center} + \eqboxf{$\underbrace{\lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0}_{p(\lambda)} = 0$} + \end{center} + + dann kriegt man das \emph{charakteristische Polynom} $p(\lambda)$ der linearen GDG. + + + \subsubsection{Beziehung zum charakteristischen Polynomen der Matrix $A$} + + Die Beziehung zum charakteristischen Polynom der Matrix $A_{n \times n}$ ist: + + \begin{center} + \eqbox{$\chi_A ( \lambda):= \det(A - \lambda I_n) = (-1)^n p(\lambda)$} + \end{center} + + + \subsection{Der Lösungsraum} + + Sei $A \in M_{n \times n}(\R)$. Der Lösungsraum + + \begin{center} + \eqbox{$X_A = \{F \in C^1(\R, \R^n) ; \, \dot F = A F\}$} + \end{center} + + bildet ein $n$-dimensionaler $\R$-Vektorraum (Unterraum von $C^1(\R, \R^n)$). \medskip + + Analoges gilt für $A \in M_{n \times n}(\C)$: + + \begin{center} + $\tilde{X}_A = \{F \in C^1(\R, \C^n) ; \, \dot F = A F\}$ + \end{center} + + bildet ein $n$-dimensionaler $\C$-Vektorraum. + + \subsubsection{Korollar} + + Sei $a = \{a_0, a_1, \dots, a_{n-1}\} \in \R$ (oder $\C$). Der Lösungsraum + + \begin{center} + $Z_a = \{f \in C^n (\R, \R^n) ; \, f^{(n)} + a_{n-1} f^{(n-1)} + \dots + a_0 f = 0\}$ + \end{center} + + ist ein $n$-dimensionaler Unterraum von $C^n(\R, \R^n)$. + \vfill\null + \columnbreak + + + \subsection{Einschub: Der Fundamentalsatz der Algebra} + + Sei $\lambda_i \in \mathbb{C}$ und $m_i \in \mathbb{N}$. Ein Polynom besitzt $n$ Nullstellen in $\C$, d.h.: + + \begin{center} + $\displaystyle p(\lambda) = \prod\limits_{i = 1}^{l} (\lambda - \lambda_i)^{m_i}$ \qquad wobei \,\, $\displaystyle \sum\limits_{i = 1}^l m_i = n$ + \end{center} + + wobei $\lambda_i$ die Nullstellen mit jeweiliger Vielfachheit $m_i$ sind. + + + \subsection{Ableitungsoperator und Identitätsoperator} + + Die Ableitungsoperator ist eine lineare Abbildung: + + \begin{center} + \eqbox{$D: C^{\infty}(\R, \R) \to C^{\infty}(\R, \R) \qquad f \mapsto \dot f = D f$} + \end{center} + + Bem: Der Identitätsoperator ($Id(f) = f$) ist offensichtlich auch linear. \medskip + + Man kann das char. Polynoms $p(\lambda)$ auch, wie folgt, beschreiben: + + \begin{center} + \eqbox{$\displaystyle p(D) = \prod\limits_{i = 1}^{l} (D - \lambda_i \cdot Id)^{m_i}$} + \end{center} + + \subsubsection{Beispiel} + + \begin{center} + $p(\lambda) = (\lambda - 1)^2 \,\, \Rightarrow p(D)f = (D-Id)^2f = (D - Id)(\dot f - f) = \ddot f - 2 \dot f + f$ + \end{center} + + + \subsection{Der Hauptsatz vom Kapitel} + + Es sei eine DGL n-ter Ordnung in der allgemeinen Form: + + \begin{center} + $f^{(n)} + a_{n-1} f^{(n-1)} + \dots +a_1 \dot f + a_0 f = 0$ + \end{center} + + Dann ist, gemäss Exponentialansatz, ihr charakteristisches Polynom: + + \begin{center} + \eqbox{$\displaystyle p(\lambda) = \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = \prod\limits_{i = 1}^{l} (\lambda - \lambda_i)^{m_i}= 0$} + \end{center} + + Jede Lösung der Differentialgleichung ist darstellbar als Linearkombination folgender $n$ linear unabhängigen Funktionen: + + \begin{center} + \eqboxf{$\displaystyle f_{ik} (t) = t^k e^{\lambda_i t}$ wobei $0 \leq k < m_i$} \quad $\displaystyle \Rightarrow f(t) = \sum\limits_{i = 1}^l C_i \cdot f_{ik}$ + \end{center} + + wobei die Koeffizienten $C_i \in \R$ durch die zur GDG dazugehörigen Anfangswerte $f(0), \dot f(0), \dots, f^{(n-1)}(0)$ bestimmt werden. \medskip + + Bem: Diese Linearkombination bildet eine Basis vom Lösungsraum $Z_a$. + \vfill\null + \columnbreak + + + \subsection{Inhomogene Differentialgleichungen höherer Ordnung} + + Seien $A \in M_{n \times n}(\R)$ und $B \in C^{0}(\R, \R^n)$. Sei $F_{part} \in C^1(\R,\R^n)$ eine beliebige ''\emph{partikuläre}'' Lösung von + + \begin{center} + \eqbox{$\dot F = A F(t) + B(t)$} + \end{center} + + Dann ist jede dazugehörige Lösung $F$ von der Form + + \begin{center} + \eqboxf{$F(t) = F_{part}(t) + F_{hom} (t)$} + \end{center} + + wobei $F_{hom}$ eine Lösung der homogenen Gleichung $\dot F = A F(t)$ ist. \medskip + + Eindeutigkeitssatz: Insbesondere gibt es zu jedem $F_0 \in \R^n$ stets genau eine Lösung $F(t)$ mit $F(0) = F_0$. + + \subsubsection{Allgemeines Vorgehen zur Berechnung der partikulären Lösung} + + Die partikuläre Lösung $F_{part}(t) \in C^1(\R,\R^n)$ löst folgende Gleichung: + + \begin{center} + \eqbox{$\dot F_{part} = A F_{part} (t) + B(t)$ \qquad bzw. $f^{(n)} + \dots + a_0 f = b(t)$} + \end{center} + + Das Vorgehen ist, wie folgt: + + \begin{center} + \begin{tabular}{r p{0.8\linewidth}} \toprule + i) & Den der Störfunktion $b(t)$ entsprechenden Ansatz suchen. \\ + ii) & Ableitungen des Ansatzes $f_{part}$ berechnen. \\ + iii) & $f_{part}$ mit ihren Ableitungen in die GDG einsetzen. \\ + iv) & Die Koeffizienten vom Lösungsansatz durch einen Koeffizientenvergleich bestimmen. \\ + \bottomrule + \end{tabular} + \end{center} + + \begin{center} + \includegraphics[width = 1\linewidth]{Bilder/DGL_Partikulare.jpeg} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Kochrezept: Vorgehen bei DGLs} + + \begin{enumerate} + \item Homogene Lösung bestimmen. + \begin{itemize} + \item Charakteristisches Polynom bestimmen (Exponentialansatz) + \item Nullstellen bestimmen und im Hauptsatz einsetzen. + \item Komplex konjugierte imaginäre Nullstellen ersetzen durch das entsprechende cos/sin Paar. + \end{itemize} + \item Partikuläre Lösung bestimmen, falls eine Störfunktion vorhanden ist. + \item Anfangswertproblem auflösen. + \end{enumerate} + + \subsection{Sonstiges} + + \subsubsection{Harmonische Oszillatoren} + + Harmonische Oszillatoren besitzen folgende DGL: + + \begin{center} + $\ddot f + \omega_0^2 f = 0, \, \omega^2_0 > 0 \quad \Rightarrow p(\lambda) = \lambda^2 + \omega_0 = 0 \quad \Rightarrow \lambda_1,2 = \pm i \omega_0$ + \end{center} + + Die Allgemeine Lösung hat, unter anderem, folgende Formen: + + \begin{center} + $f(t) = A e^{i \omega_0 t} + B e^{-i \omega_0 t}$ \qquad $f(t) = A \cos(\omega_0 t) + B \sin(\omega_0 t)$ + \end{center} + + Die Reelle Lösung (Physikalische) bildet man durch die Summe und Differenz der ersten Lösung unter Anwendung der Eulerschen Formel (Koeffizienten A,B erst am Schluss anfügen). + + + \subsubsection{Erzwungene Schwingungen} + + Die folgende DGL einer erzwungene Schwingung wandelt man, wie folgt, zur Berechnung der partikulären: + + \begin{center} + $\ddot f + 2\delta \dot f + \omega_0^2 f = \beta_0 \cos(\omega t) \quad \Rightarrow \ddot f + 2\delta \dot f + \omega_0^2 f = \beta_0 e^{i\omega t}$ + \end{center} + + Benutzt man den Ansatz $f_{part} = c \cdot e^{i \omega t}$. So bekommt man: + + \begin{center} + $c = \dfrac{\beta_0}{(\omega_0^2 - \omega^2) + 2 i \delta \omega} = \beta_0 \dfrac{\omega_0^2 - \omega^2 - 2i \delta \omega}{(\omega_0^2 - \omega^2)^2 + 4 \delta^2 \omega^2}$ + \end{center} + + Drückt man dies in der Polarform $R \cdot e^{i \varphi}$ aus: + + \begin{center} + $R = \dfrac{\beta_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4 \delta^2 \omega^2}}$ \qquad $\varphi = \arctan\left( \dfrac{-2 \delta \omega}{\omega_0^2 - \omega^2} \right) \in \, ]-\pi,0[$ + \end{center} + + Und setzt $c$ wieder ein in $f_{part}$: + + \begin{center} + $f_{part} = c \cdot e^{i \omega t} = R \cdot e^{i(\omega t + \varphi)}$ + \end{center} + + Nun kann man noch den Realteil nehmen und hat dann die gesuchte partikuläre Lösung: + + \begin{center} + $\tilde{f}_{part}(t) = \Re{f_{part}(t)} = R \cdot \cos(\omega t + \varphi)$ + \end{center} + \vfill\null + \pagebreak + + + \section{Differentialrechnung in $\R^n$} + + \subsection{Partielle Ableitung} + + Sei $\Omega \subset \R^n$ offen. $f: \Omega \to \R$ heisst in $x_0$ in Richtung $e_i = (0, \dots, 1, \dots 0)$ partiell differenzierbar, falls folgender Grenzwert exisitert: + + \begin{center} + \eqboxf{$\dfrac{\partial f}{\partial x^i} (x_0) = \partial_{x^i} f (x_0) = \lim\limits_{h \to 0} \dfrac{f(x_0 + h \cdot e_i) - f(x_0)}{h}$} + \end{center} + + \begin{center} + \includegraphics[width = 1\linewidth]{Bilder/PartiellAbleitung.png} + \end{center} + + + \subsubsection{Tangentialebene} + %https://de.wikipedia.org/wiki/Tangentialebene#Tangentialebene_an_den_Graphen_einer_Funktion + + Die Tangentialebene ist die beste Approximation einer 2D-Funktion in der Nähe von $(x_0, y_0)$. Sie ist, wie folgt, definiert: + + \begin{center} + \eqbox{$g(x,y) = f(x_0,y_0) + \dfrac{\partial f}{\partial x}(x_0,y_0) \cdot (x - x_0) + \dfrac{\partial f}{\partial y}(x_0,y_0) \cdot (y - y_0)$} + \end{center} + + + \subsection{Differential} + + Sei $\Omega \subset \R^n$ offen. $f: \Omega \to \R$ heisst differenzierbar an der Stelle $x_0$, falls eine lineare Abbildung $A: \R^n \to \R$ existiert mit + + \begin{center} + \eqbox{$\lim\limits_{x \to x_0} \dfrac{f(x) - f(x_0) - A \cdot (x - x_0)}{|| x - x_0||} = 0$} + \end{center} + + Dann heisst $d f_{x_0} := A$ (ein sogenannter co-Vektor) das Differential von $f$ an der Stelle $x_0$ und desweiteren gilt + + \begin{center} + $d f_{x_0} \cdot (x - x_0) = \begin{bmatrix} + \dfrac{\partial f}{\partial x^{0}} (x_0), \dots, \dfrac{\partial f}{\partial x^{n}} (x_0) \\ + \end{bmatrix} \begin{pmatrix} + x^1 - x_0^1 \\ \vdots \\ x^n - x^n_0 \\ + \end{pmatrix}$ + \end{center} + + Bem: $dx^{i} = (0, \dots, 0, 1, 0, \dots 0)$ sind die Basiselemente von $d f_{x_0}$. + + \subsubsection{Satz: Kriterium für $C^1$} + + Sei $\Omega \subset \R^n$ offen. $f: \Omega \to \R$ heisst von der Klasse $C^1$, $f \in C^1(\Omega)$ falls: + + \begin{center} + \eqbox{\begin{tabular}{r p{0.8\linewidth}} + i) & \hspace*{-10pt} $f$ ist an jeder Stelle $x_0 \in \Omega$ in jede Richtung $\vect{e}_i$ partiell differenzierbar. \\ + ii) & \hspace*{-10pt} Die Funktionen $x \mapsto \dfrac{\partial f}{\partial x^{i}} (x)$ sind auf $\Omega$ \emph{stetig}. \\ + \end{tabular}} + \end{center} + + + \subsubsection{Satz} + + $f \in C^1(\Omega) \Rightarrow$ $f$ ist an jeder Stelle $x_0$ \emph{differenzierbar und stetig} auf $\Omega$. + \vfill\null + \columnbreak + + + \subsection{Differentiationsregeln} + + Seien $f,g: \Omega \to \R$ an der Stelle $x_0 \in \Omega$ differenzierbar. Dann gilt + + \begin{center} + \renewcommand{\arraystretch}{2} + \begin{tabular}{r l} \toprule + Summenregel: & \hspace*{-10pt} $d(f + g)_{(x_0)} = df_{(x_0)} + dg_{(x_0)}$ \\ + Produktregel: & \hspace*{-10pt} $d(f \cdot g)_{(x_0)} = df_{(x_0)} \cdot g(x_0) + f(x_0) \cdot dg_{(x_0)}$ \\ + Quotientregel: & \hspace*{-10pt} $d\left(\dfrac{f}{g}\right)_{(x_0)} = \dfrac{df_{(x_0)} \cdot g(x_0) - f(x_0) dg_{(x_0)}}{[g(x_0)]^2}$ \\ \bottomrule + \end{tabular} + \end{center} + + Anwendung der Produktregel: $d f^n = n \cdot f^{n - 1} \cdot df$ + + + \subsubsection{Satz: Kettenregel 1. Version} + + Sei $g: \Omega \subset \R^n \to \R$ an der Stelle $x_0 \in \Omega$ differenzierbar und sei $f: \R \to \R$ an der Stelle $g(x_0)$ differenzierbar. Dann gilt + + \begin{center} + \begin{minipage}{0.55\linewidth} + \begin{center} + \eqbox{$\underbrace{d(g \circ f)_{(x_0)}}_{\text{co-Vektor}} = f'(g(x_0)) \cdot \underbrace{d g_{(x_0)}}_{\text{co-Vektor}}$} + \end{center} + \end{minipage} + \begin{minipage}{0.44\linewidth} + \begin{center} + \includegraphics[width = 1\linewidth]{Bilder/Kettenregel_0.png} + \end{center} + \end{minipage} + \end{center} + + + \subsubsection{Satz: Kettenregel 2. Version} + + Sei $g: ]a,b[ \to \Omega$ an der Stelle $t_0 \in ]a,b[$ differenzierbar und sei $f: \Omega \to \R$ $\Omega \subset \R^n$ an der Stelle $g(t_0)$ differenzierbar. Dann gilt + + \begin{center} + \begin{minipage}{0.5\linewidth} + \begin{center} + \eqbox{$(f \circ g)' (t_0) = \underbrace{df_{(g(t_0))}}_{\text{co-Vektor}} \cdot \underbrace{g'(t_0)}_{\text{Vektor}}$} + \end{center} + \end{minipage} + \begin{minipage}{0.49\linewidth} + \begin{center} + \includegraphics[width = 1\linewidth]{Bilder/Kettenregel.png} + \end{center} + \end{minipage} + \end{center} + + + \subsection{Richtungsableitungen} + + Sei $\Omega \subseteq \R^n$ offen und $f: \Omega \to \R$. Dann ist die Richtungsableitung eines Vektors $\vect{v} \in \R^n$ an einem Punkt $x_0$: + + \begin{center} + \eqbox{$\partial_{\vect{v}} f(x_0) = \lim\limits_{s \to 0} \dfrac{f(x_0 + s \cdot \vect v) - f(x_0)}{s}$} + \end{center} + + \subsubsection{Satz} + + $f$ ist differenzierbar in $x_0 \in \Omega \, \Rightarrow \partial_v f(x_0) = df_{(x_0)} \cdot \vect{v}$ + + + \subsection{Vektorfelder} + + Funktionen der Form $v: \Omega \subset \R^n \to \R^n$ heissen Vektorfelder. Jeder Stelle im Definitionsbereich wird ein Vektor zugeordnet. + + + \subsubsection{Gradientenfeld} + + Sei $f \in C^1(\R^n)$ mit der dazugehörigen 1-Form $\lambda = df$. Das zur 1-Form zugehörige Vektorfeld heisst Gradientenfeld und ist + + \begin{center} + \eqbox{$\displaystyle \nabla f(\vect{x}) = \sum\limits_{i = 1}^n \dfrac{\partial f}{\partial x^i}(\vect{x}) \cdot \vect{e}^i = \begin{pmatrix} + \frac{\partial f}{\partial x^1} \\ \vdots \\ \frac{\partial f}{\partial x^n} + \end{pmatrix}$} + \end{center} + + \begin{center} + \begin{tabular}{r p{0.8\linewidth}} \toprule + i) & \hspace*{-10pt} $\nabla f(\vect{x}_0)$ gibt die Richtung des ''steilsten Anstiegs'' an. \\ + ii) & \hspace*{-10pt} $\nabla f(\vect{x}_0)$ ist orthogonal zu den ''Levelmengen''. \\ + \bottomrule + \end{tabular} + \end{center} + + + \subsection{Höhere Ableitungen} + + Sei $\Omega \subset \R^n$ offen und $f \in C^1(\Omega)$. Dann ist $f \in C^2(\Omega)$, falls + + \begin{center} + \eqbox{$\dfrac{\partial f}{\partial x^{i}} \in C^1(\Omega), \quad \forall 1 \leq i \leq n$} + \end{center} + + D.h. falls \textbf{alle} zweiten part. Ableitungen existieren und stetig auf $\Omega$ sind. + + \subsubsection{Satz von Hermann Schwarz} + + Sei $\Omega \subset \R^n$ offen und $f \in C^2(\Omega)$. Dann gilt + + \begin{center} + \eqbox{$\dfrac{\partial}{\partial x^{i}}\left(\dfrac{\partial f}{\partial x^{j}}\right) = \dfrac{\partial}{\partial x^{j}} \left(\dfrac{\partial f}{\partial x^{i}} \right), \quad \forall \, 1 \leq i, j \leq n$} + \end{center} + + + \subsection{Funktionen der Klasse $C^m$} + + Sei $\Omega \subset \R^n$. $f \in C^1(\Omega)$ heisst von der Klasse $C^m$, $f \in C^m(\Omega)$, falls + + \begin{center} + \eqbox{$\dfrac{\partial f}{\partial x^{i}} \in C^{m - 1}(\Omega), \quad \forall 1 \leq i \leq n$} + \end{center} + + \subsubsection{Notation (Multi-Index Schreibweise)} + + Sei $\alpha = (\alpha_1, \dots, \alpha_n) \in \N^n_0$ mit $|\alpha| = \alpha_1 + \dots + \alpha_n$ und $\alpha! = \alpha_1! \cdot \dots \cdot \alpha_n!$. Dann gelten für $x = (x_1, \dots, x_n)$ folgende Notationen: + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{r l} \toprule + i) & \hspace*{-10pt} $x^\alpha = x_1^{\alpha} \cdot \, \dots \, \cdot x_n^{\alpha_n}$ \\ + ii) & \hspace*{-10pt} $\partial^{\alpha} f(x) = \dfrac{\partial^{|\alpha|} f(x)}{(\partial x_{1})^{\alpha_1} \dots (\partial x_n)^{\alpha_n}}$ \\ + iii) & \hspace*{-10pt} $p(x) = \sum\limits_{|\alpha| \leq N} a_{\alpha} x^{\alpha}$ \\ + \bottomrule + \end{tabular} + \end{center} + + + \subsection{Der Satz von Taylor} + + Sei $f \in C^m(\Omega \subset \R^n)$. Für jedes $x, y \in \R^n$ existiert ein $c \in [x, y]$, so dass + + \begin{center} + \eqboxf{$f(y) = \underbrace{\sum\limits_{|\alpha| \leq (m - 1)} \dfrac{1}{\alpha!} \partial^{\alpha}f(x) (y - x)^{\alpha}}_{=: T_{m - 1}f(y, x)} + \underbrace{\sum\limits_{|\alpha| = m} \dfrac{1}{\alpha!} \partial^{\alpha}f(c) (y - x)^{\alpha}}_{\text{Restterm}}$} + \end{center} + + $T_k f(y,x)$ heisst das Taylor-Polynom $k-ter$ Ordnung von $f(y)$ mit dem Entwicklungspunkt $x$. + + \subsubsection{Taylorentwicklung für $n = 2$ und $m = 2$ } + + \begin{center} + \renewcommand{\arraystretch}{2} + \begin{tabular}{r l} + \hspace*{-8pt} $f(y) = $ & \hspace*{-13pt} $f(x) + \frac{\partial f}{\partial x}(x) \cdot (y_1 - x_1) + \frac{\partial f}{\partial y}(x) \cdot (y_2 - x_2)$ \\ + & \hspace*{-13pt} $+ \frac{1}{2!} \, [ \frac{\partial^2 f}{\partial x_1^2}(c) (y_1 - x_1)^2 + \frac{\partial^2 f}{\partial x_2^2}(c) (y_2 - x_2)^2$ \\ + & $ +2 \frac{\partial^2 f}{\partial x_2 \partial x_1}(c) (y_2 - x_2)(y_1 - x_1) ]$ \\ + \end{tabular} + \end{center} + + \subsubsection{Korollar} + + Die Taylorentwicklung gibt die beste Approximation um $x$: + + \begin{center} + \eqbox{$\lim\limits_{y \to x} \dfrac{f(y) - T_m f(y,x)}{|| y - x||^m} = 0$} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Hesse-Matrix} + + Sei $\Omega \subset \R^n$ und $f \in C^2(\Omega)$. Die Hesse-Matrix von $f$ am Punkt $x$ ist: + + \begin{center} + \eqboxf{$Hess_f (x) := \left(\dfrac{\partial^2 f_{(x)}}{\partial x_i \partial y_i}\right)_{1 \leq i,j \leq n} = \begin{pmatrix} + \frac{\partial^2 f_{(x)}}{\partial x_1^2} & \dots & \frac{\partial^2 f_{(x)}}{\partial x_1 \partial x_n} \\ + \vdots & \ddots & \vdots \\ + \frac{\partial^2 f_{(x)}}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f_{(x)}}{\partial x_n^2} \\ + \end{pmatrix}$} + \end{center} + + $Hess_f (x)$ ist symmetrisch $\Rightarrow$ $Hess_f (x)$ \emph{diagonalisierbar} mit $\lambda_i \in \R$. + + \subsubsection{Einschub: Definitheit einer Matrix} + + \begin{tabular}{r l} + i) & \hspace*{-13pt} Eine Matrix ist \textbf{positiv definit}, falls alle Eigenwerte $\lambda_i > 0$. \\ + ii) & \hspace*{-13pt} Eine Matrix ist \textbf{negativ definit}, falls alle Eigenwerte $\lambda_i < 0$. \\ + ii) & \hspace*{-13pt} Eine Matrix ist \textbf{indefinit}, falls positive und negative Eigenwerte. \\ + \end{tabular} + + \subsubsection{Kritischer Punkt} + + Ein Punkt $x_0 \in \Omega$ mit $df_{(x_0)} = 0$ (\emph{Koordinatenweise} $= 0$!) heisst kritischer Punkt von $f$. + + \subsubsection{Satz} + + Sei $f \in C^2(\Omega \subset \R^n)$. Ein kritischer Punkt $x_0$ ist eine + + \begin{center} + \begin{tabular}{r l} \toprule + i) & \hspace*{-10pt} strikte lokale Minimastelle, falls $Hess_f (x_0)$ positiv definit ist. \\ + ii) & \hspace*{-10pt} strikte lokale Maximastelle, falls $Hess_f (x_0)$ negativ definit ist. \\ + iii) & \hspace*{-10pt} ein Sattelpunkt, falls $Hess_f (x_0)$ indefinit ist. \\ + \bottomrule + \end{tabular} + \end{center} + + Bem: Bei degenerierten Punkten ($\det(Hess_f (x_0)) = 0$) kann man mit diesem Ansatz keine Aussage über lokales Min/Max/Sattelpunkt treffen! + + + \subsection{Vektorwertige Funktionen} + + Sei $\Omega \subset \R^n$ offen und $f:\Omega \to \R^l$. $f$ heisst in $x_0 \in \Omega$ differenzierbar, falls alle Komponenten von $f$ in $x_0$ differenzierbar sind. \medskip + + Das Differential mit Einheitsvektoren heisst \emph{Jacobi-Matrix} ($M_{l \times n} (\R)$): + + \begin{center} + \eqbox{$df_{(x_0)} = \begin{pmatrix} + df^1_{(x_0)} \\ \vdots \\ df^l_{(x_0)} + \end{pmatrix} = \begin{pmatrix} + \frac{\partial f^1}{\partial x_1} & \dots & \frac{\partial f^1}{\partial x_n} \\ + \vdots & \ddots & \vdots \\ + \frac{\partial f^l}{\partial x_1} & \dots & \frac{\partial f^l}{\partial x_n} \\ + \end{pmatrix}$} + \end{center} + + \subsubsection{Differentiationsregeln} + + Sei $\Omega \subset \R^n$ offen. Seien $f,g: \Omega \to \R^l$ in $x_0 \in \Omega$ differenzierbar. Es gilt + + \begin{center} + \begin{tabular}{r l} \toprule + i) & \hspace*{-10pt} $d(f + g)_{x_0} = df_{(x_0)} + dg_{(x_0)}$ \\ + ii) & \hspace*{-10pt} $d \langle f, g \rangle_{(x_0)} = \sum\limits_{i = 1}^l \left( f^{i}(x_0) \cdot dg^{i}_{(x_0)} + g^{i}(x_0) \cdot df^{i}_{(x_0)} \right)$ \\ + \bottomrule + \end{tabular} + \end{center} + + \subsubsection{Kettenregel 3te Version} + + Seien $g: \R^n \to \R^l$ an $x_0 \in \R^n$ und $f: \R^l \to \R^m$ an $g(x_0)$ differenzierbar. + + \begin{center} + \eqbox{$d(f \circ g)_{(x_0)} = \underbrace{df_{(g(x_0))}}_{\in M_{m \times l}(\R)} \cdot \underbrace{dg_{(x_0)}}_{\in M_{l \times n}(\R)}$} + \end{center} + + Es empfiehlt sich stark für $g$ und $f$ andere Koordinaten zu benutzen! + + + \subsection{Der Umkehrsatz} + + Sei $\Omega \subset \R^n$ offen und $f \in C^1(\Omega, \R^n)$. Sei $df_{(x_0)} \in M_{n \times n}(\R)$ invertierbar ($\det(df_{(x_0)}) \neq 0$) an einer Stelle $x_0 \in \Omega$. Dann existieren Umgebungen + + \begin{center} + $\exists r > 0$ so dass $f:\underbrace{B_r(x_0)}_{:= U} \to \underbrace{f(B_r(x_0))}_{:=V}$ + \end{center} + + invertierbar ist und es existiert ein $g: V \to U$ so dass + + \begin{center} + $g(f(x)) = x, \, \forall x \in U, \quad f(g(y)) = y, \, \forall y \in V$ + \end{center} + + + und $g \in C^1(V, U)$ wobei $dg_{(f(x))} = (df_{(x)})^{-1}$. ($^{-1}$ $\hat{=}$ Matrixinverse!) + + + \subsubsection{Diffeomorphismus} + + Sei $U,V \subset \R^n$ offen und $\Phi \in C^1(U;V)$. Die Abbildung $\Phi$ heisst ein \emph{Diffeomorphismus} von $U$ auf $\Phi(U) = V$, falls $\Phi$ \emph{injektiv ist} und falls die Umkehrabbildung $\Phi^{-1}$ von der Klasse $C^1(V;U)$ ist. \medskip + + Aus dem Umkehrsatz folgt: Eine differenzierbare Abbildung mit invertierbarem Differential ist \emph{lokal} ein Diffeomorphismus. + + + \subsubsection{Anwendung: Polarkoordinanten} + + Die Abbildung $f: (0, \infty) \times (-\pi,\pi) \to \R^2$ mit + + \begin{center} + $f(r, \varphi) = \begin{pmatrix} + r \cos(\varphi) \\ r \sin(\varphi) + \end{pmatrix}$ \qquad $df_{(r, \varphi)} = \begin{pmatrix} + \cos(\varphi) & - r \sin(\varphi) \\ \sin(\varphi) & r \cos(\varphi) \\ + \end{pmatrix}$ + \end{center} + + erfüllt die Bedingungen vom Umkehrsatz, da + + \begin{center} + $\det(df_{(r, \varphi)}) = r(\cos^2(\varphi) + \sin^2(\varphi)) = r > 0$ + \end{center} + + Man kann also \emph{lokal} folgende Umkehrabbildung einführen: + + \begin{center} + $g:\begin{pmatrix} + x \\ y \\ + \end{pmatrix} \mapsto \begin{pmatrix} + r = \sqrt{x^2 + y^2} \\ \varphi = \arctan(y/x) \\ + \end{pmatrix}$ + \end{center} + + + \subsection{Implizite Funktionen} + + Das Ziel ist es die Levelmengen / Höhenlinien ($f^{-1}(\{c\})$) zu beschreiben. + + \subsubsection{Satz} + + Sei $\Omega \subset (\R^{n-1} \times \R)$ offen und $f \in C^1(\Omega, \R)$. Man hat also \emph{eine Variable der Funktion isoliert}: $f(\underbrace{x}_{\in \R^{n - 1}}, \underbrace{y}_{\in \R})$. \medskip + + Sei ein Punkt $(x_0, y_0) \in \Omega$ mit $f(x_0, y_0) = 0$ und $\partial_y f_{(x_0,y_0)} \neq 0$. Dann existiert lokal eine Umgebung von $(x_0, y_0)$ und eine Funktion $h$: + + \begin{center} + $h: B_r^{n - 1}(x_0) \to \R$ + \end{center} + + sodass, die Höhenlinie $f(x_0,y_0) = 0$ durch $h$ beschrieben wird: + + \begin{center} + \eqbox{$\{(x,y) \in U; \, f(x,y) = 0\} \quad = \quad \{(x,h(x)); \, x \in B_r^{n-1}(x_0)\}$} + \end{center} + + Insbesondere gilt $h(x_0) = y_0$ und $f(x_0,h(x_0)) = f(x_0, y_0)$. Ausserdem ist $h \in C^1(B_r^{n - 1}(x_0), \R)$ und das Differential ist: + + \begin{center} + \eqbox{$\displaystyle dh_{(x_0)} = - \dfrac{1}{\partial_y f_{(x_0, h(x_0))}} \underbrace{\sum\limits_{i = 1}^{n - 1} \partial_{x_i} f_{(x_0, h(x_0))} \, dx_i}_{=d_x f}$} + \end{center} + + wobei $d_x f$ das Differential von $f$ ist ohne den Koordinaten $y$. + \vfill\null + \columnbreak + + + \subsection{Extrema mit Nebenbedingungen} + + \subsubsection{Satz: Lagrange-Multiplikatorenregel} + + Sei $f, g \in C^1(\R^n, \R)$ mit wiederum isolierter Variable: $(\underbrace{x}_{\in \R^{n - 1}}, \underbrace{y}_{\in \R})$. + + Sei $(x_0, y_0)$ mit $g(x_0, y_0) = 0$ und $\partial_y g(x_0, y_0) \neq 0$. Und $(x_0, y_0)$ bildet \emph{ein lokales Minimum (bzw. Maximum)} für die Einschränkung von $f$ auf die Höhenlinie $g^{-1}(\{0\})$. Dann $\exists \lambda \in \R$ (Lagrange Multiplikator), so dass + + \begin{center} + \eqboxf{$df_{(x_0,y_0)} + \lambda \cdot dg_{(x_0,y_0)} = 0$} + \end{center} + + Bemerkung: Dies ist eine Addition von co-Vektoren, welches zu einem \textbf{Gleichungssystem} führt. (Koordinatenweise $= 0$!) \medskip + + \textbf{Achtung}: Die Einschränkung $\partial_y g(x_0, y_0) \neq 0$ muss beachtet werden! Die Punkte, welche deswegen wegfallen können trotzdem ein Extrema sein, d.h. am Schluss vergleichen mit den Punkten vom Verfahren. + + Beispiel: Auf $B_1^2(0)$ wären diese Punkte $(1,0)$ und $(-1,0)$. + + \subsubsection{Nebenbedingungen: Einfache Randmengen} + + Der Rand vom Einheitskreis ist: $\partial B_1(0) := \{(x,y) \in \R^2; x^2 + y^2 = 1\}$. + + \subsection{Vorgehen: Globale Extremewerte bestimmen} + + \begin{enumerate} + \item Argumentieren, wieso die Menge Kompakt ist. + \begin{itemize} + \item Abgeschlossenheit: Menge duch \emph{stetige} Funktionen abgegrenzt, es folgt die Menge enthält alle Randpunkte. + \item Beschränktheit: Auf die Ungleichung verweisen. + \item Kompakt: Folgern das die Menge Kompakt ist und Extremumsatz gilt. + \end{itemize} + \item Kritische Punkte im Inneren bestimmen (Kandidaten für Extrema). + \item Alle Kandidaten für Extrema \emph{auf dem Rand der Menge} bestimmen. Man kann hier entweder Lagrange verwenden oder das alternative Vorgehen (siehe unten). + \item Die Randpunkte, welche nicht erfasst werden könnnen bestimmen, \textbf{auch Kandidaten}! + \item Alle Kandidaten in $f$ einsetzen und Minimum/Maximum bestimmen. + \end{enumerate} + + \subsubsection{Alternatives Vorgehen für das Bestimmen der Kandidaten auf dem Rand} + + Diese Vorgehen bietet sich gut an, wenn der Rand nicht durch eine einzige Nebenbedingungen darstellbar ist. Vorgehen: + + \begin{enumerate} + \item Man parametrisiert den Rand mithilfe von Wegen $\gamma_i(t), \, t \in [a,b]$. + \item Man betrachtet für jeden Weg $\gamma_i$ die Funktion $f(\gamma_i)$ und analysiert, ob $f(\gamma_i)$ einen kritischen Punkt aufweist ($f'(\gamma_i) = 0$). + \item Man \textbf{überprüft}, ob der kritische Punkt überhaupt in $t$ drinnen ist. + \item Man nimmt zusätzlich \textbf{alle Randpunkte der Wege} als Kandidaten auf, d.h. $a, b$ eingesetzt in ihr $\gamma_i$ sind auch Kandidaten! + \end{enumerate} + \vfill\null + \pagebreak + + + \section{Wegintegrale} + + \subsection{Differentialform (1-Form)} + + Sei $\Omega \subset \R^n$ offen. Eine Abbildung $\lambda: \Omega \to L(\R^n,\R)$, welche jedem $x \in \Omega$ eine lineare Abbildung $\lambda(x): \R^n \to \R$ zuordnet, heisst Differentialform vom Grad 1. Es gilt ausserdem folgende Äquivalenz: + + \begin{center} + \eqbox{1-Form: $\displaystyle \lambda(x) = \sum\limits_{i = 1}^n \lambda_i(x) d x^i$} $\Leftrightarrow$ Vektorfeld: $V(x) = \begin{pmatrix} + \lambda_1(x) \\ \vdots \\ \lambda_n(x) + \end{pmatrix}$ + \end{center} + + wobei $dx^{i} = (0, \dots, 0, 1, 0, \dots 0)$ die Basiselemente von $L(\R^n, \R)$ sind. \medskip + + Bemerkung: Für jedes $f \in C^1(\Omega)$ ist das Differential $df$ eine 1-Form. + + + \subsection{Wegintegral} + + Ein Weg ist eine vektorwertige Funktion $\gamma \in C^1_{stw}([a,b], \R^n)$. Man sagt: + + \begin{center} + \begin{tabular}{r p{0.8\linewidth}} \toprule + i) & \hspace*{-10pt} $\gamma(a)$ und $\gamma(b)$ sind seine Anfangs- und Endpunkte. \\ + ii) & \hspace*{-10pt} Die Ableitung $\dot \gamma$ ist der Geschwindigkeitsvektor. \\ + ii) & \hspace*{-10pt} Wenn $\gamma(a) = \gamma(b)$ gilt, dann heisst $\gamma$ abgeschlossen. \\ + \bottomrule + \end{tabular} + \end{center} + + Sei $\gamma_1, \gamma_2 \in C^1_{stw}([0,1], \R^n)$ mit $\gamma_1(1) = \gamma_2(0)$. Dann ist $\gamma = \gamma_1 + \gamma_2$: + + \begin{center} + $\gamma: [0,2] \to \Omega$ mit $t \mapsto \begin{cases} + \gamma_1(t) & t \in [0,1] \\ + \gamma_2(t - 1) & t \in [1,2] \\ + \end{cases}$ + \end{center} + + Es gilt ausserdem: $\displaystyle \int_{\gamma_1 + \gamma_2} \lambda = \int_{\gamma_1} \lambda + \int_{\gamma_2} \lambda$ + + \subsubsection{Das Wegintegral} + + Sei $\gamma \in C^1_{stw}([a,b], \R^n)$ und $\lambda$ eine 1-Form mit dem zu $\lambda$ zugehörigem Vektorfeld $V$. Dann ist das Wegintegral: + + \begin{center} + \eqboxf{$\displaystyle \int_\gamma \lambda := \int\limits_a^b \lambda(\gamma(t)) \cdot \dot \gamma(t) dt \, \Leftrightarrow \, \int_\gamma V \, d\vec{s} = \int\limits_a^b \langle V_i(\gamma(t)), \dot\gamma \rangle dt$} + \end{center} + + Das Wegintegral ist \emph{unabhängig} von orientierungserhaltenden Umparametrisierungen von $\gamma$. + + + \subsubsection{Einschub: Wegzusammenhängend} + + Sei $\Omega \subset \R^n$ offen. $\Omega$ heisst \emph{wegzusammenhängend}, falls jedes Paar von Punkten in $\Omega$ mit einem Weg verbunden werden kann. + + + \subsubsection{Satz} + + Sei $\Omega$ offen und Wegzusammenhängend. + + \begin{center} + \eqbox{$f \in C^1(\Omega)$ mit $df = 0 \, \Leftrightarrow f$ ist konstant} + \end{center} + + \subsubsection{Einschub: Parametrisierungen} + + \begin{tabular}{r l l} + Gerade von $a$ nach $b$: & \hspace*{-12pt} $\gamma(t) = (1-t) \cdot a + t \cdot b$ & \hspace*{-5pt} $t \in [0,1]$ \\ + Kreis (positiven Sinne): & \hspace*{-12pt} $\gamma(t) = (r\cdot \cos(\varphi), r \cdot \sin(\varphi))$ & \hspace*{-5pt} $t \in [0, 2\pi]$ \\ + Kreis (\emph{negativen} Sinne): & \hspace*{-12pt} $\gamma(t) = (r\cdot \cos(\varphi), - r \cdot \sin(\varphi))$ & \hspace*{-5pt} $t \in [0, 2\pi]$ \\ + Ellipse (positive Sinne): & \hspace*{-12pt} $\gamma(t) = (a \cdot \cos(t), b \cdot \sin(t))$ & \hspace*{-5pt} $t \in [0,2\pi]$ \\ + \end{tabular} + + + + + \subsection{Potentiale} + + Sei $\Omega \subset \R^d$ offen und $\lambda \in C^0(\Omega, \R^n)$ eine 1-Form. Es sind \textbf{äquivalent}: \medskip + + i) $\exists f \in C^1(\Omega)$ mit \eqbox{$\lambda = df$} \quad ($f$ heisst ''Potential von $\lambda$'') \medskip + + ii) Für je zwei Wege $\gamma_1, \gamma_2 \in C^1_{stw}([a,b], \Omega)$ mit $\gamma_1(a) = \gamma_2(a), \, \gamma_1(b) = \gamma_2(b)$, d.h. mit \emph{gleichen Anfangs- und Endpunkten}, gilt: + + \begin{center} + \eqboxf{$\displaystyle \int\limits_{\gamma_1} \lambda = \int\limits_{\gamma_2} \lambda = f(\gamma(b)) - f(\gamma(a))$} + \end{center} + + iii) Für jeden \textbf{geschlossenen} Weg $\gamma \in C^1_{stw}([a,b], \Omega)$ mit $\gamma(a) = \gamma(b)$: + + \begin{center} + \eqbox{$\displaystyle \int\limits_{\gamma} \lambda = 0$} \quad (''$V$ ist \emph{konservativ}'') + \end{center} + + Bem: Potentiale sind bis auf die Addition einer Konstante bestimmt! + + + \subsubsection{Verfahren zur Berechnung eines Potentials} + + Sei $\lambda$ eine 1-Form. Das zugehörige Potential $f$, falls es existiert, kann man mit folgendem Verfahren ermitteln: \medskip + + i) Wir setzen oBdA: $f(0,0,0) = 0$ \medskip + + ii) Wir nehmen die folgenden drei Wegintegrale: + + \begin{center} + $\gamma_1(t) = \begin{pmatrix} + t \, x \\ 0 \\ 0 \\ + \end{pmatrix}, \, \gamma_2(t) = \begin{pmatrix} + x \\ t \, y \\ 0 \\ + \end{pmatrix}, \, \gamma_3(t) = \begin{pmatrix} + x \\ y \\ t \, z \\ + \end{pmatrix}$ + \end{center} + + iii) Aus dem zweiten Punkt im vorherigen Satz folgt: + + \begin{center} + $\displaystyle f(x,y,z) = f(0,0,0) + \int_{\gamma_1 + \gamma_2 + \gamma_3} \lambda = \int_{\gamma_1} \lambda + \int_{\gamma_2} \lambda + \int_{\gamma_3} \lambda$ + \end{center} + + \begin{center} + \begin{minipage}{0.35\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/Potential.png} + \end{center} + \end{minipage} + \begin{minipage}{0.64\linewidth} + iv) Zum Schluss: \textbf{Verifizieren}, dass $f$ wirklich das Potential von $\lambda$ ist: + + \begin{center} + \eqbox{$df(x,y,z) = \lambda$} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Satz: Potentialfeld} + + Für ein Vektorfeld $V \in C^0(\Omega, \R^n)$ sind äquivalent: + + \begin{center} + \eqbox{$V$ ist konservativ $\Leftrightarrow$ $\exists f \in C^1(\Omega): V = \nabla f$} + \end{center} + + In diesem Fall heisst $V$ \textbf{Potentialfeld} mit dem Potential $f$. + + + \subsubsection{Korollar: Rotationsvektorfeld} + + Sei $V = (V_1, \dots, V_n) \in C^1(\Omega, \R^n)$ konservativ. Dann gilt + + \begin{center} + \eqbox{$\dfrac{\partial V^{i}}{\partial x^{j}} - \dfrac{\partial V^{j}}{\partial x^{i}} = 0, \quad \forall \, 1 \leq i,j \leq n$} + \end{center} + \vfill\null + \columnbreak + + + \section{Integration in $\R^n$} + + + \subsection{Riemannsches Integral über einen Quader} + + Ein $n$-dimensionaler \emph{Quader} ist ein Produkt von Intervallen + + \begin{center} + $\displaystyle Q = \prod\limits_{i = 1}^n I_i = \{x = (x^{i})_{1 \leq i \leq n}; x^{i} \in I_i, 1 \leq i \leq n\}$ + \end{center} + + Solch ein Quader $Q$ hat den folgenden \emph{Elementarinhalt}: + + \begin{center} + \eqbox{$\displaystyle \mu(Q) = \mu([a,b] \times [c,d]) = \prod\limits_{i = 1}^n \left| I_i \right|$} + \end{center} + + \begin{center} + \begin{minipage}{0.74\linewidth} + Die \emph{Zerlegung} $P = \{Q_k; 1 \leq k \leq K\}$ eines Quaders in disjunkte Teilquader $Q = \bigcup\limits_{k = 1}^K$ hat folgende \emph{Feinheit}: + + \begin{center} + $\delta_P = \max\limits_{1 \leq k \leq K} diam (Q_k)$ + \end{center} + \end{minipage} + \begin{minipage}{0.25\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/Quader.png} + \end{center} + \end{minipage} + \end{center} + + wobei $diam (Q_k)$ den \emph{Durchmesser} von $Q_k$ bezeichnet: + + \begin{center} + $diam(Q_k) = \sup\limits_{x,y \in Q_k} \left| x - y \right|, \, 1 \leq k \leq K$ + \end{center} + + \subsubsection{Treppenfunktion in $\R^n$} + + Eine Funktion $f: Q \to \R$ auf einem Quader $Q$ heisst Treppenfunktion, falls $f(x)$ eine Darstellung folgender Form besitzt + + \begin{center} + \eqbox{$\displaystyle f(x) = \sum\limits_{k = 1}^K c_k \cdot \chi_{Q_k}(x)$ wobei $\chi_{Q_k}(x) = \begin{cases} + 1 & , x \in Q_k \\ 0 & , x \not\in Q_k \\ + \end{cases}$} + \end{center} + + mit einer Zerlegung $P = \{Q_k; 1 \leq k \leq K\}$ und Konstanten $c_k \in \R$. \medskip + + Das Riemann-Integral einer Treppenfunktion $f(x)$ ist, wie folgt definiert: + + \begin{center} + \eqbox{$\displaystyle\int_Q f(x) \,d\mu = \sum\limits_{k = 1}^K c_k \cdot \mu(Q_k)$} + \end{center} + + \subsubsection{Satz: Verfeinerung der Zerlegung} + + Eine Zerlegung $\tilde{P} = \{\tilde{Q}_j; \, 1 \leq j \leq J\}$ ist eine Verfeinerung der Zerlegung $P = \{Q_k; 1 \leq k \leq K\}$, falls jedes $\tilde{Q}_j$ in einem Quader $Q_k$ enthalten ist. \medskip + + Das Integral wird durch eine Verfeinerung \textbf{nicht} verändert. + + + \subsection{Das Riemann Integral} + + Seien $e^-,e^+$ Treppenfunktionen und $f: Q \to \R$ beschränkt. Dann gilt: + + \begin{center} + Untere R-Integral von $f$: \, \eqbox{$\displaystyle\underline{\int_Q} f(x) \,d\mu = \sup\limits_{e^-(x) \leq f(x)} \int_Q e^-(x) \,d\mu$} \medskip + + Obere R-Integral von $f$: \eqbox{$\displaystyle\overline{\int_Q} f(x) \,d\mu = \inf\limits_{f(x) \leq e^+(x)} \int_Q e^+(x) \,d\mu$} + \end{center} + + Die Funktion $f$ heisst \emph{R-integrabel} über $Q$, falls + + \begin{center} + \eqboxf{$\displaystyle\underline{\int_Q} f(x) \,d\mu = \overline{\int_Q} f(x) \,d\mu =: \int_Q f(x) \,d\mu$} + \end{center} + \vfill\null + \columnbreak + + + \subsubsection{Satz} + + Sei $f \in C^0(Q)$. Dann ist $f$ über $Q$ R-integrabel. + + \subsubsection{Satz: Riemannsche Summen} + + Für jede Folge von Zerlegungen $(P^{(l)})_{l \in \N}$ von $Q$ mit Feinheit $\delta_{P^{(l)}} \xrightarrow[]{l \to \infty} 0$ gilt für eine beliebige Auswahl von Punkten $x_k^{(l)} \in Q_k^{(l)}$ stets + + \begin{center} + \eqbox{$\displaystyle \int_Q \left(\sum\limits_{k = 1}^{K^{(l)}} f(x_k^{(l)}) \chi_{Q_k^{(l)}}\right) d \mu = \sum\limits_{k = 1}^{K^{(l)}} f(x_k^{(l)}) \cdot \mu(Q_k^{(l)}) \xrightarrow[]{l \to \infty} \int_Q f \,d\mu$} + \end{center} + + + \subsection{Eigenschaften des Riemannschen Integrals} + + \subsubsection{Linearität} + + Seien $f, g: Q \to \R$ beschränkt und über $Q$ R-integrabel, und $a \in \R$. + + \begin{center} + \eqbox{$\displaystyle \int_Q \left( \alpha \cdot f(x) + g(x) \right) \,d\mu = \alpha \cdot \int_Q f(x) \,d\mu + \int_Q g(x) \,dx$} + \end{center} + + \subsubsection{Monotonie} + + Seien $f,g: Q \to \R$ beschränkt und über $Q$ R-integrabel, und sei $f \leq g$. + + \begin{center} + \eqbox{$\displaystyle \int_Q f(x) \, d\mu \leq \int_Q g(x) \, d\mu$} + \end{center} + + Insbesondere gilt für $f \in C^0(\overline{Q})$ die Abschätzung + + \begin{center} + \eqbox{$\displaystyle \left| \int_Q f(x) \, d\mu \right| \leq \int_Q \left| f(x) \right| \, d\mu \leq \sup\limits_{Q} \left| f(x) \right| \cdot \mu(Q)$} + \end{center} + + \subsubsection{Korollar} + + Seien $f, f_k \in C^0(\overline{Q})$ mit $f_k \xrightarrow[]{glm.} f(k \to \infty)$. Dann gilt + + \begin{center} + \eqbox{$\displaystyle\left| \int_Q f_k \,d\mu - \int_Q f \,d\mu \right| \leq \int_Q | f_k - f | \, d\mu \leq ||f_k - f || \cdot \mu(Q) \xrightarrow[]{(k \to \infty)} 0$} + \end{center} + + \subsubsection{Gebietsadditivität} + + Sei $f: Q \to \R$ beschränkt und über $Q$ R-integrabel. Sei $P = \{Q_k; \, 1 \leq k \leq K\}$ eine Zerlegung von $Q$ in disjunkte Quader $Q_k$. Dann gilt + + \begin{center} + \eqbox{$\displaystyle\int_Q f(x) \,d\mu = \sum\limits_{k = 1}^K \int_{Q_k} f(x) \,d\mu$} + \end{center} + + + + \subsection{Satz von Fubini} + + Sei $Q = [a,b] \times [c,d] \subset \R^2$ \textbf{und} sei $f \in C^0(Q)$. Dann gilt + + \begin{center} + \eqboxf{$\displaystyle\int_Q f(x,y) \,d\mu = \int\limits_a^b \left( \int\limits_c^d f(x,y) \,dy \right) dx = \int\limits_c^d \left( \int\limits_a^b f(x,y) \,dx \right) dy$} + \end{center} + + Analoges gilt auch in höheren Dimensionen, solange $f \in C^0(Q)$ ist. + \vfill\null + \columnbreak + + + \subsection{Jordan-Bereiche} + + Sei $\Omega \subset \R^n$ beschränkt und $Q$ ein \emph{beliebiger} Quader mit $\Omega \subset Q$. + + \begin{center} + \begin{minipage}{0.25\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/Jordan-Messbar.png} + \end{center} + \end{minipage} + \begin{minipage}{0.74\linewidth} + Sei $\chi_\Omega$ die charakteristische Funktion: + + \begin{center} + $\chi_\Omega(x) = \begin{cases} + 1 & x \in \Omega \\ 0 & x \not\in \Omega \\ + \end{cases}$ + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Jordan-messbar (JM)} + + Die Menge $\Omega$ heisst \emph{Jordan-messbar}, falls $\chi_\Omega(x)$ R-integrabel über $Q$ ist, diese Eigenschaft ist vom Quader $Q$ das $\Omega$ enthält \textbf{unabhängig}. \medskip + + Das n-dimensionale Jordansche Mass von $\Omega$: \eqbox{$\displaystyle \mu(\Omega) = \int_Q \chi_{\Omega}(x) \,d\mu$} + + \subsubsection{Satz} + + Seien $\Omega_1, \Omega_2$ \emph{JM}. Dann sind $\Omega_1 \cap \Omega_2$ und $\Omega_1 \cup \Omega_2$ auch \emph{JM} und + + \begin{center} + \eqbox{$\mu(\Omega_1) + \mu(\Omega_2) = \mu(\Omega_1 \cup \Omega_2) + \mu(\Omega_1 \cap \Omega_2)$} + \end{center} + + \subsubsection{R-Integral über Jordan-messbare Bereiche} + + Sei $\Omega \subset Q$ \emph{JM} und $f: \Omega \to \R$ beschränkt. $f$ heisst \textbf{R-Integrabel über} $\Omega$ , falls die Fortsetzung $\overline{f}$ von $f$ über $Q$ R-integrabel ist und es gilt: + + \begin{center} + \eqbox{$\overline{f} = \begin{cases} + f(x) & x \in \Omega \\ 0 & x \in Q \setminus \Omega \\ + \end{cases} \qquad \displaystyle \int_\Omega f\, d\mu := \int_Q \overline{f}\, d\mu$} + \end{center} + + \subsubsection{Satz} + + Sei $\Omega$ \emph{JM} und $f \in C^0(\Omega)$ beschränkt. Dann ist $f$ auf $\Omega$ R-Integrabel. + + + \subsection{Hypograph und Hypergraph} + + Sei $Q' \subset \R^{n-1}$ und $\psi \in C^0_{stw}(\overline{Q'})$ mit $\psi \geq 0$. Dann ist die Menge + + \begin{center} + \eqbox{$\Omega_{\psi} = \{ (x', x_n) \in \R^n ; \, x' \in Q', \, 0 \leq x_n \leq \psi(x') \}$} + \end{center} + + Jordan-messbar und heisst \textbf{Hypograph}. \medskip + + Sei $Q' \subset \R^{n-1}$ und $\phi \in C^0_{stw}(\overline{Q'})$ mit $\phi \leq 0$. Dann ist die Menge + + \begin{center} + \eqbox{$\Omega_{\phi} = \{ (x', x_n) \in \R^n ; \, x' \in Q', \, \phi(x') \leq x_n \leq 0 \}$} + \end{center} + + Jordan-messbar und heisst \textbf{Hypergraph}. \medskip + + Die Beschränkung der Menge ist flexibel, also man kann auch: + + \begin{center} + \eqboxf{$\Omega = \{ (x, y) \in \R^2 ; \, x \in [a,b] , \,\phi(x) \leq y \leq \psi(x)\}$} + \end{center} + + Das zugehörige Integral ist für den Fall $\R^2$: + + \begin{center} + \eqbox{$\displaystyle \int_{\Omega} f \, d\mu = \int\limits_{a}^b \left(\, \int\limits_{\phi(x)}^{\psi(x)} f(x,y) dy \right) dx$} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Satz von Green} + + Sei $\Omega \subset Q \subset \R^2$ ein Gebiet der Klasse $C^1_{stw}$ und $g, h \in C^1(\overline{\Omega})$. Es gilt + + \begin{center} + \eqboxf{$\displaystyle \int_\Omega \left(\dfrac{\partial h}{\partial x} (x,y) - \dfrac{\partial g}{\partial y}(x,y) \right) \,d\mu = \int_{\partial\Omega} \underbrace{g(x,y) \,dx + h(x,y)\, dy}_{:= \lambda}$} + \end{center} + + wobei der Rand von $\Omega$ so parametrisiert wird, dass $\Omega$ \textbf{zur Linken} liegt. + + \subsubsection{Gebiet der Klasse $C^1_{stw}$ in $\R^2$} + + Sei $\Omega \subset Q$ (beschränkt). Ein Gebiet $\Omega$ ist von der Klasse $C^1_{stw}$, falls \textbf{zu jedem} Punkt $p \in \partial\Omega$ folgendes existiert: + + \begin{center} + \begin{minipage}{0.74\linewidth} + i) Falls notwendig, \emph{eine Drehung der Koordinatenachsen}, d.h. von $(x,y)$ zu $(x_1, x_2)$: + + \begin{center} + $\begin{pmatrix} + x_1 \\ x_2 \\ + \end{pmatrix} = \begin{pmatrix} + \cos(\Theta) & \sin(\Theta) \\ + -\sin(\Theta) & \cos(\Theta) \\ + \end{pmatrix} \begin{pmatrix} + x \\ y \\ + \end{pmatrix}$ + \end{center} + + ii) Es $\exists$ ein Quader $[a,b] \times [c,d]$ in den neuen Koordinaten $(x_1, x_2)$, welcher $p \in (a,b) \times (c,d)$ erfüllt. + \end{minipage} + \begin{minipage}{0.25\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/Stueckweise_Gebit.png} + \end{center} + \end{minipage} + \end{center} + + iii) Es $\exists \psi \in C^1_{stw}([a,b],[c,d])$ und die Schnittmenge $\Omega \cap (a,b)\times(c,d)$ ist ein \emph{Hyper-/Hypograph}. + + \subsubsection{Satz von Green mit Vektorfeld} + + Sei $\Omega \subset \R^2$ beschränkt und von der Klasse $C^1_{stw}$. Sei $V = \begin{pmatrix} + V_1(x,y) \\ V_2(x,y) \\ + \end{pmatrix}$ ein $C^1(\overline{\Omega};\R^2)$ Vektorfeld. Dann gilt: + + + \begin{center} + \begin{minipage}{0.54\linewidth} + \begin{center} + \eqbox{$\text{rot(V)} = \partial_x V_2 (x,y) - \partial_y V_1(x,y)$} + \end{center} + \end{minipage} + \begin{minipage}{0.45\linewidth} + \begin{center} + \eqboxf{$\displaystyle \int_\Omega \text{rot(V)} \,d\mu = \int_{\partial\Omega} V \, d\vec{s}$} + \end{center} + \end{minipage} + \end{center} + + wobei $\text{rot}(V)$ die Rotation von $V$ ist und $\partial\Omega$ ist so parametrisiert, dass $\Omega$ \textbf{zur Linken} liegt. \medskip + + Bem: Wenn $rot(V) = 1$ ist, dann kann man \emph{die Fläche} $\mu(\Omega)$ berechnen. + + + \subsection{Satz von Poincaré} + + Sei $\Omega \subset \R^2$ ein beschränktes, einfach zusammenhängendes $C^1_{stw}$ Gebiet und sei $V$ ein $\R^2$-Vektorfeld der Klasse $C^1(\overline{\Omega}, \R^2)$. Dann gilt: + + \begin{center} + \eqboxf{$V$ ist konservativ ($V = \nabla f$) $\Leftrightarrow$ rot($V) = 0$} + \end{center} + + \subsubsection{Einschub: Einfach zusammenhängende Gebiete} + + Sei $\Omega \subset \R^2$ beschränkt, von der Klasse $C^1_{stw}$ und wegzusammenhängend. $\Omega$ heisst einfach zusammenhängend, falls $\partial\Omega$ nur eine 'Komponente' hat. \medskip + + Informell: $\Omega$ besitzt keine 'Löcher'. + \vfill\null + \columnbreak + + + \subsection{Substitutionsregel} + + \subsubsection{Einschub: Diffeomorphismus} + + Sei $U,V \subset \R^n$ offen und $\Phi \in C^1(U;V)$. Die Abbildung $\Phi$ heisst ein Diffeomorphismus von $U$ auf $\Phi(U) = V$, falls $\Phi$ \emph{injektiv ist} und falls die Umkehrabbildung $\Phi^{-1} \in C^1(V;U)$. \medskip + + Aus dem Umkehrsatz folgt: $\Phi \in C^1(U;V)$ Diffeomorphismus $\Leftrightarrow$ + + \begin{center} + \eqbox{ $\Phi$ injektiv und $det(d\Phi_{(x_0)}) \neq 0, \forall x_0 \in U$} + \end{center} + + \subsubsection{Transformationssatz} + + Sei $U,V \subset \R^n$ offen und $\Phi \in C^1(U,V)$ ein Diffeomorphismus. Sei $\overline{\Omega} \subset U$ beschränkt und Jordan messbar. Dann ist $\Phi(\Omega)$ Jordan messbar, und + + \begin{center} + \eqbox{$\displaystyle \mu(\Phi(\Omega)) = \int_{\Omega} |\det(d\Phi(x))| d\mu(x)$} + \end{center} + + wobei $\mu(\Phi(\Omega))$ das \textbf{Volumen} von $\Phi(\Omega)$ ist. + + \subsubsection{Satz: Substitutionsregel} + + Sei $U,V \subset \R^n$ offen, $\Phi \in C^1(U,\R^n)$ ein Diffeomorphismus von $U$ auf $V \subset \R^n$. Sei $\Omega \subset U$ beschränkt und Jordan messbar, und sei $f:\Phi(\Omega) \to \R$ beschränkt und R-integrabel. Dann gilt + + \begin{center} + \begin{minipage}{0.6\linewidth} + \begin{center} + \eqboxf{$\displaystyle \int_{\Phi(\Omega)} f \, d\mu = \int_{\Omega} (f \circ \Phi) \cdot |\det(d\Phi)| \, d\mu$} + \end{center} + \end{minipage} + \begin{minipage}{0.39\linewidth} + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/Substitutionsregel.png} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Einschub: Verschiede Koordinatentransformationen} + + Die folgenden Koordinatentransformationen sind ein Diffeomorphismus, wie von der Substitutionsregel verlangt. \medskip + + + \textbf{Polarkoordinaten}: $\Phi: (0, \infty) \times (-\pi,\pi) \to \R^2$ mit + + \begin{center} + $\Phi(r, \varphi) := \begin{pmatrix} + r \cos(\varphi) \\ r \sin(\varphi) + \end{pmatrix}$ \quad und \quad $\det(d\Phi_{(r, \varphi)}) = r$ + \end{center} + + Desweiteren gilt: Bild($\Phi) = \R^2 \setminus \{(x,y) \in \R^2; \, y = 0, x \leq 0\}$. \medskip + + \textbf{Zylinderkoordinaten}: $\Phi: (0, \infty) \times (-\pi,\pi) \times \R \to \R^3$ mit + + \begin{center} + $\Phi(r, \varphi, h) := \begin{pmatrix} + r \cos(\varphi) \\ r \sin(\varphi) \\ h \\ + \end{pmatrix}$ \quad und \quad $\det(d\Phi_{(r, \varphi,h)}) = r$ + \end{center} + + Desweiteren gilt: Bild($\Phi) = \R^3 \setminus \{(x,y,z) \in \R^3; \, y = 0, x \leq 0\}$. \medskip + + \textbf{Kugelkoordinaten}: $\Phi: (0, \infty) \times (0,\pi) \times (-\pi,\pi) \to \R^3$ mit + + \begin{center} + $\Phi(r, \Theta, \varphi) := \begin{pmatrix} + r \sin(\Theta) \cos(\varphi) \\ r \sin(\Theta) \sin(\varphi) \\ r \cos(\Theta) \\ + \end{pmatrix}$ \quad und \quad $\det(d\Phi_{(r, \Theta, \varphi)}) = r^2 \sin(\Theta)$ + \end{center} + + Desweiteren gilt: Bild($\Phi) = \R^3 \setminus \{(x,y,z) \in \R^3; \, y = 0, x \leq 0\}$. + \vfill\null + \columnbreak + + + + + \subsection{Oberflächenmass und Flussintegral} + %https://video.ethz.ch/lectures/d-math/2022/spring/401-0232-00L/25701150-98ca-4c82-a6fe-f812ac4074a9.html + + \subsubsection{Lokale Immersion} + + Sei $U \subset \R^2$ offen und $\Phi \in C^1(U, \R^3)$ \emph{injektiv}. $\Phi$ bildet eine lokale Immersion, falls $d\Phi(x) \in M_{3 \times 2}(\R)$ \textbf{für alle} $(x,y) \in U$ regulär ist ($Rang = 2$). + + \begin{center} + \eqbox{Rang$(d\Phi) = 2 \Leftrightarrow \dfrac{\partial \Phi}{\partial x}$, $\dfrac{\partial \Phi}{\partial y}$ linear unabhängig $\Leftrightarrow \dfrac{\partial \Phi}{\partial x} \times \dfrac{\partial \Phi}{\partial y} \neq 0$} + \end{center} + + Bem: Diese Bedingung ist notwendig, damit es lokal eine Ebene in $\R^3$ abbildet (schöne Oberfläche), sonst wäre es lokal teils eine Linie. \medskip + + Bem: Sei $\psi \in C^1(Q, \R)$ wobei $Q = [a,b] \times [c,d]$ mit $\phi(x,y) := \begin{pmatrix} + x \\ y \\ \psi(x,y) \\ + \end{pmatrix}$. Dann ist $\phi(x,y)$ \emph{immer} eine lokale Immersion. + + \subsubsection{Der Oberflächeninhalt} + + Sei $\Phi: U \subset \R^2 \to \R^3$ eine lokale Immersion. Sei $\overline{\Omega} \subset U$ beschränkt und Jordan messbar. Der 2-dimensionale Flächeninhalt von $S = \Phi(\overline{\Omega})$ ist + + \begin{center} + \eqboxf{$\displaystyle \mu_2(\Phi(\Omega)) := \int_\Omega \underbrace{|| \partial_x \Phi \times \partial_y \Phi|| d\mu}_{=: d o} = \int_S do$} + \end{center} + + wobei $do$ der \emph{skalare Flächeninhalt} bezüglich $\Phi$ ist. + + + \subsubsection{Das Integral einer Funktion über eine Oberfläche} + + Sei $\Phi: U \subset \R^2 \to \R^3$ eine lokale Immersion. Sei $\overline{\Omega} \subset U$ beschränkt und Jordan messbar. Sei $S = \Phi(\Omega)$ das zugehörige Flächenstück in $\R^3$ und $f: \overline{S} \to \R$ stetig. Dann ist das Integral von $f$ auf $S$: + + \begin{center} + \eqbox{$\displaystyle \int_S f do := \int_\Omega (f \circ \Phi) \cdot ||\partial_x \Phi \times \partial_y \Phi || d \mu$} + \end{center} + + + \subsubsection{Normalenvektor} + + Sei $\Phi: U \subset \R^2 \to \R^3$ eine lokale Immersion. Der Normaleinheitsvektor $n$ zur Fläche $\Phi(U) = S$ ist: + + \begin{center} + \eqbox{$\vec{n} = \dfrac{\partial_x \Phi \times \partial_y \Phi}{|| \partial_x \Phi \times \partial_y \Phi ||}$} + \end{center} + + \subsubsection{Das Flussintegral} + + Sei $V = \begin{pmatrix} + P \\ Q \\ R \\ + \end{pmatrix}$ ein stetiges Vektorfeld. Sei $\Phi: U \subset \R^2 \to \R^3$ eine lokale Immersion. Sei $\overline{\Omega} \subset U$ beschränkt und Jordan messbar. Dann ist der Fluss von $V$ durch die Fläche $S = \Phi(\overline{\Omega})$: + + \begin{center} + \eqboxf{$\displaystyle \int_S V \cdot \vec{n} \, do = \int_\Omega (V \circ \Phi) \cdot \dfrac{\partial_x \Phi \times \partial_y \Phi}{|| \partial_x \Phi \times \partial_y \Phi ||} || \partial_x \Phi \times \partial_y \Phi || d \mu$} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Der Satz von Stokes in $\R^3$} + %https://video.ethz.ch/lectures/d-math/2022/spring/401-0232-00L/25701150-98ca-4c82-a6fe-f812ac4074a9.html @45min + + \subsubsection{Die Rotation eines $\R^3$ Vektorfeld} + + Sei ein Vektorfeld $V \in C^1(\R^3)$. Dann ist die \emph{Rotation} von $V$: + + \begin{center} + $\text{rot}(V) = \nabla \times V = \begin{pmatrix} + \partial_{x_1} \\ \partial_{x_2} \\ \partial_{x_3} \\ + \end{pmatrix} \times \begin{pmatrix} + V_1 \\ V_2 \\ V_3 \\ + \end{pmatrix} = \begin{pmatrix} + \partial_{x_2}V_3 - \partial_{x_3}V_2 \\ \partial_{x_3}V_1 - \partial_{x_1}V_3 \\ \partial_{x_1}V_2 - \partial_{x_2}V_1 \\ + \end{pmatrix}$ + \end{center} + + + \subsubsection{Satz von Stokes} + + Sei $\Phi$ eine lokale Immersion von $U \subset \R^2 \to \R^3$. Sei $\overline{\Omega} \subset U$ in $C^1_{stw}$, Jordan messbar und beschränkt. Sei $V \in C^1(\R^3)$. Dann gilt: + + \begin{center} + \renewcommand{\arraystretch}{1.25} + \eqbox{\begin{tabular}{r l} + $\displaystyle \int_{S = \Phi(\Omega)} \text{rot}(V) \cdot \vec{n} \,d o$ & $\displaystyle= \int_\Omega (\text{rot}(V) \circ \Phi) \cdot (\partial_x \Phi \times \partial_y \Phi) d\mu$ \\ + & $\displaystyle= \int_{\partial\Omega} (V \circ \Phi) \cdot \frac{d}{dt}(\Phi \circ \gamma) dt = \int_{\partial S} V d\vec{s}$ \\ + \end{tabular}} + \end{center} + + In Worten: Der Fluss von $\text{rot}(V)$ durch eine Fläche gleicht der Zirkulation vom Vektorfeld $V$ seinem Rand entlang. + + \begin{center} + \includegraphics[width=0.75\linewidth]{Bilder/Stokes.png} + \end{center} + + + \subsection{Der Satz von Gauss} + + \subsubsection{Divergenz eines Vektorfeldes} + + Die Divergenz (''Quellstärke'') eines Vektorfeldes $V \in C^1(\R^3)$ ist: + + \begin{center} + $\text{div}(V) = \partial_x V_1(x,y,z) + \partial_y V_2 (x,y,z) + \partial_z V_3 (x,y,z)$ + \end{center} + + \subsubsection{Satz von Gauss in $\R^2$} + + Sei $\Omega$ ein $C^1_{stw}$ Gebiet mit dem zu $\partial\Omega$ zugehörigen Tangentialvektor $\dot\gamma$. Sei $\nu$ der Normalvektor zum Rand (''äussere Normale''). Dann gilt: + + \begin{center} + \begin{minipage}{0.4\linewidth} + \begin{center} + $\nu = \begin{pmatrix} \dot \gamma_2 \\ - \dot\gamma_1 \\ + \end{pmatrix} \dfrac{1}{\sqrt{\dot\gamma_1^2 + \dot\gamma_2^2}}$ + \end{center} + \end{minipage} + \begin{minipage}{0.59\linewidth} + \begin{center} + \eqbox{$\displaystyle \int_\Omega \text{div}(V) = \int_{\partial\Omega} V \cdot \nu \, d\vec{s}$} + \end{center} + \end{minipage} + \end{center} + + \subsubsection{Satz von Gauss in $\R^3$} + + Sei ein Vektorfeld $V \in C^1(\R^3)$. Sei $\psi \in C^1(Q := [a,b] \times [c,d], \R_+)$ mit dem Hypographen $\Omega_{\psi} = \{x \in \R^3; (x_1,x_2) \in Q, 0 \leq x_3 \leq \psi(x_1,x_2)\}$. Wir setzen vorraus, dass $V = 0$ für $x_3 \leq 0$ und für $(x_1,x_2) \not\in Q$. Es gilt: + + \begin{center} + \eqbox{$\displaystyle \int_{\Omega_\psi} \text{div}(V) d\mu = \int_Q V(\Phi) \cdot (\partial_x \Phi \times \partial_y \Phi)\, d\mu$} $\phi(x,y) := \begin{pmatrix} + x \\ y \\ \psi(x,y) \\ + \end{pmatrix}$ + \end{center} + + In Worten: Das Integral von $\text{div}(V)$ in $\Omega_{\psi}$ gleicht dem Fluss von $V$ durch die Fläche von $\psi(x,y)$. + + + \vfill\null + \columnbreak + + + \subsection{Beispiel eines Oberflächenintegrals} + + Wir berechnen die Oberfläche $S = \Phi(B_1^2(0))/2$ (nur obere Halbkugel). + + \begin{center} + \begin{minipage}{0.6\linewidth} + \begin{center} + $\Phi(x,y) = \begin{pmatrix} + x \\ y \\ \sqrt{1 - x^2 - y^2} \\ + \end{pmatrix}$ + \end{center} + \end{minipage} + \begin{minipage}{0.39\linewidth} + \begin{center} + \includegraphics[width=0.4\linewidth]{Bilder/Oberflachenintegral_BSP.png} + \end{center} + \end{minipage} + \end{center} + + Wir bekommen also: + + \begin{center} + $\partial_x \Phi = \begin{pmatrix} + 1 \\ 0 \\ - \frac{x}{\sqrt{1 - x^2 - y^2}} \\ + \end{pmatrix} \qquad \partial_y \Phi = \begin{pmatrix} + 0 \\ 1 \\ - \frac{y}{\sqrt{1 - x^2 - y^2}} \\ + \end{pmatrix}$ \medskip + + $\partial_x \Phi \times \partial_y \Phi = \begin{pmatrix} + \frac{x}{\sqrt{1 - x^2 - y^2}} \\ \frac{y}{\sqrt{1 - x^2 - y^2}} \\ 1 \\ + \end{pmatrix} \Rightarrow || \partial_x \Phi \times \partial_y \Phi || = \dfrac{1}{\sqrt{1 - (x^2 + y^2)}}$ + \end{center} + + Wir benutzen nun die Substitutionsregel mit Polarkoordinaten: + + \begin{center} + $\mu_2(S) = \displaystyle \int\limits_{B_1^2(0)} || \partial_x \Phi \times \partial_y \Phi|| d\mu = \int\limits_{-\pi}^\pi \left( \int\limits_0^1 \dfrac{r}{\sqrt{1 - r^2}} dr \right) d\Theta = 2\pi$ + \end{center} + + Wir integrieren nun die Höhe $f(x,y,z) = z$ auf der Oberfläche $S$: + + \begin{center} + $\displaystyle \int\limits_S f do = \int\limits_{-\pi}^{\pi} \left( \int\limits_0^1 \dfrac{r \cdot \sqrt{1 - r^2}}{\sqrt{1 - r^2}} dr \right) d\Theta = 2\pi \left[\dfrac{r^2}{2}\right]^1_0 = \pi = \dfrac{1}{2} \mu_2(S)$ + \end{center} + + + \subsection{Punktmengen} + + Sei der Radius $r > 0$ und der Index 0 markiert das Zentrum. Dann gilt: \medskip + + Kreis: $K = \left\{(x, y)\in \mathbb{R}^2; (x-x_0)^2+(y-y_0)^2 = r^2 \right\}$ \medskip + + Kugel: $K = \left\{(x, y, z)\in \mathbb{R}^3; (x-x_0)^2+(y-y_0)^2+(z-z_0)^2 = r^2 \right\}$ \medskip + + Zylinder: $Z=\left\{(x, y, z)\in \mathbb{R}^3; (x-x_0)^2+(y-y_0)^2 =r^2, \, 0\le z \le h \right\}$ \medskip + + Kegel: $K=\left\{(x, y, z)\in \mathbb{R}^3; x^2+y^2 = \frac{r^2}{h^2}(h-z)^2 \right\}$ \medskip + + Ellipse: $E=\left\{(x, y)\in \mathbb{R}^2; \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2 }{b^2} = r^2 \right\}$ \medskip + + Ellipsoid: $E=\left\{(x, y, z)\in \mathbb{R}^3; \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2} +\frac{(z-z_0)^2}{c^2} = r^2 \right\}$ + + \subsubsection{Volumen eines Ellipsoid} + + Für eine Berechnung des Volumens eines Ellipsoids benutzt man die folgendermassen angepassten Kugelkoordinanten: + + \begin{center} + $F(r, \Theta, \varphi) := \begin{pmatrix} + a \cdot r \sin(\Theta) \cos(\varphi) \\ b \cdot r \sin(\Theta) \sin(\varphi) \\ c \cdot r \cos(\Theta) \\ + \end{pmatrix}$ und $\det(dF_{(r, \Theta, \varphi)}) = abc \cdot r^2 \sin(\Theta)$ + \end{center} + + $\int_{E(a, b, c, R)} 1 d \mu=\int_{B_{R}(0)}|\det d F(x, y, z)| d z d y d x = abc \mu\left(B_{R}(0)\right)$ + \vfill\null + \columnbreak + + + \subsection{Kochrezepte} + + + \subsubsection{Integralgrenzen von einem Hyper- und Hypograph bestimmen} + + \begin{enumerate} + \item Die Variable für das äusserste Integral wählen (oft $x$), alle anderen Variablen in der Mengengleichung auf $0$ setzen. Nun kann man die Grenze für die erste Variable herauslesen. + \item Die Variable vom zweitäussersten Integral (oft $y$) auswählen, alle anderen Variablen in der Menge \textbf{ausser die schon bestimmte Variable} auf $0$ setzen. + \item[2.5] Analoger Schritt für die 3te Variable. + \item Nun hat man die Integralgrenzen bestimmt und kann fortfahren mit der Berechnung vom Integral. + \end{enumerate} + + + \subsubsection{Kochrezept Volumenberechnung} + + \begin{enumerate} + \item Das Integrationsgebiet $\Phi(\Omega)$ (bzw. Integrationsgrenzen) bestimmen in den passenden Koordinatentransformationen. + + \textbf{Achtung}: Auf die Einschränkungen der Koordinatentransformation achten (z.B. $r \in ]0,\pi[$). + \item[1.5] Evtl. bemerken, dass die Koordinatentransformation eine Halbebene nicht trifft, dies aber vernachlässigbar ist beim Transformationssatz. + \item Den Transformationssatz anwenden ($\det(d\Phi)$ nicht vergessen). + \end{enumerate} + + + \subsubsection{Kochrezept Oberflächeninhalt} + + \begin{enumerate} + \item Die Menge anschauen und bestimmen um was für ein Objekt es sich handelt, Skizzen helfen! \textbf{Man berechnet die Oberfläche stückweise}. Einfache Fläche, wie Kreisflächen, kann man direkt mit den bekannten Formeln berechnen. + \item Schwerere Oberflächen muss man mit folgendem Vorgehen berechnen: + \begin{itemize} + \item Eine Achse vorläufig entfernen, d.h. Variable auf $0$ setzen in der Mengengleichung. Man schaut von nun an von dieser Achse aus auf das Objekt. (z.B.: Man entfernt $z$ $\Rightarrow$ man schaut von oben). + \item Skizze von dem neuen 2D-Gebiet erstellen und dann die Ungleichungen (am Ende die Integralgrenzen) der zwei übrig bleibenden Variablen für das 2D-Gebiet bestimmen. + \item Mit der ursprünglichen Mengengleichung eine Funktion $\psi(x,y)$ für die entfernte Variable bestimmen. \textbf{Achtung}: Es kann sein, dass hier zwei Funktionen herauskommen, in diesem Fall muss man den Oberflächeninhalt für \textbf{beide} berechnen (evtl. Symmetrie!). + \item Lokale Immersion der Form $\phi(x,y) := \begin{pmatrix} + x \\ y \\ \psi(x,y) \\ + \end{pmatrix}$ bilden. + \item Oberflächeninhalt(e) berechnen mit der bekannten Formel, das Integrationsgebiet ist das zuvor bestimmte 2D-Gebiet. + \end{itemize} + \item \textbf{Alle} Oberflächeninhalt zusammenaddieren. + \end{enumerate} + \vfill\null + \columnbreak + + + \subsection{Einfache Geometrieformeln} + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{r l l} \toprule + & Fläche/Volumen & Umfang/Oberfläche \\ + \midrule + Kreis & $A = \pi r^2$ & $U = 2 \pi r$ \\ + Kugel & $V = \frac{4}{3} \pi r^3$ & $S = 4 \pi r^2$ \\ + Ellipsoid & $V = \frac{4}{3} \pi a b c$ & \\ + Zylinder & $V = \pi r^2 h $ & $S = 2\pi r h + 2\pi r^2$ \\ + Kegel & $V = \frac{1}{3} \pi r^2 h$ & $S = \pi r^2 + \pi r \sqrt{h^2 + r^2}$ \\ + \bottomrule + \end{tabular} + \end{center} +\end{multicols*} + +\input{sections/Ubersicht.tex} + + +\setcounter{secnumdepth}{2} +\end{document} diff --git a/zusammenfassung/analysis/Bilder/DGL_Partikulare.jpeg b/zusammenfassung/analysis/Bilder/DGL_Partikulare.jpeg new file mode 100644 index 0000000..d874354 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/DGL_Partikulare.jpeg differ diff --git a/zusammenfassung/analysis/Bilder/Delta_Epsilon_Kriterium.png b/zusammenfassung/analysis/Bilder/Delta_Epsilon_Kriterium.png new file mode 100644 index 0000000..7a78410 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Delta_Epsilon_Kriterium.png differ diff --git a/zusammenfassung/analysis/Bilder/Injektiv.JPG b/zusammenfassung/analysis/Bilder/Injektiv.JPG new file mode 100644 index 0000000..15d4703 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Injektiv.JPG differ diff --git a/zusammenfassung/analysis/Bilder/Jordan-Messbar.png b/zusammenfassung/analysis/Bilder/Jordan-Messbar.png new file mode 100644 index 0000000..f4dbe35 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Jordan-Messbar.png differ diff --git a/zusammenfassung/analysis/Bilder/Kettenregel.png b/zusammenfassung/analysis/Bilder/Kettenregel.png new file mode 100644 index 0000000..28889ba Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Kettenregel.png differ diff --git a/zusammenfassung/analysis/Bilder/Kettenregel_0.png b/zusammenfassung/analysis/Bilder/Kettenregel_0.png new file mode 100644 index 0000000..bc01819 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Kettenregel_0.png differ diff --git a/zusammenfassung/analysis/Bilder/Oberflachenintegral_BSP.png b/zusammenfassung/analysis/Bilder/Oberflachenintegral_BSP.png new file mode 100644 index 0000000..aef39fa Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Oberflachenintegral_BSP.png differ diff --git a/zusammenfassung/analysis/Bilder/PartiellAbleitung.png b/zusammenfassung/analysis/Bilder/PartiellAbleitung.png new file mode 100644 index 0000000..b70f443 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/PartiellAbleitung.png differ diff --git a/zusammenfassung/analysis/Bilder/Potential.png b/zusammenfassung/analysis/Bilder/Potential.png new file mode 100644 index 0000000..1f7d1c2 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Potential.png differ diff --git a/zusammenfassung/analysis/Bilder/Quader.png b/zusammenfassung/analysis/Bilder/Quader.png new file mode 100644 index 0000000..b5392ae Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Quader.png differ diff --git a/zusammenfassung/analysis/Bilder/R-Integral.png b/zusammenfassung/analysis/Bilder/R-Integral.png new file mode 100644 index 0000000..342d8cd Binary files /dev/null and b/zusammenfassung/analysis/Bilder/R-Integral.png differ diff --git a/zusammenfassung/analysis/Bilder/RiemannSumme.png b/zusammenfassung/analysis/Bilder/RiemannSumme.png new file mode 100644 index 0000000..55341c1 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/RiemannSumme.png differ diff --git a/zusammenfassung/analysis/Bilder/Sinh_cosh_tanh.png b/zusammenfassung/analysis/Bilder/Sinh_cosh_tanh.png new file mode 100644 index 0000000..ef4e2fe Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Sinh_cosh_tanh.png differ diff --git a/zusammenfassung/analysis/Bilder/Stokes.png b/zusammenfassung/analysis/Bilder/Stokes.png new file mode 100644 index 0000000..97aadfc Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Stokes.png differ diff --git a/zusammenfassung/analysis/Bilder/Stueckweise_Gebit.png b/zusammenfassung/analysis/Bilder/Stueckweise_Gebit.png new file mode 100644 index 0000000..330f74a Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Stueckweise_Gebit.png differ diff --git a/zusammenfassung/analysis/Bilder/Substitutionsregel.png b/zusammenfassung/analysis/Bilder/Substitutionsregel.png new file mode 100644 index 0000000..8cf00b2 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Substitutionsregel.png differ diff --git a/zusammenfassung/analysis/Bilder/Surjektiv.JPG b/zusammenfassung/analysis/Bilder/Surjektiv.JPG new file mode 100644 index 0000000..d49a5f9 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Surjektiv.JPG differ diff --git a/zusammenfassung/analysis/Bilder/TopoStetigkeit.png b/zusammenfassung/analysis/Bilder/TopoStetigkeit.png new file mode 100644 index 0000000..42a46b6 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/TopoStetigkeit.png differ diff --git a/zusammenfassung/analysis/Bilder/Trigonometric_functions.png b/zusammenfassung/analysis/Bilder/Trigonometric_functions.png new file mode 100644 index 0000000..a8c216e Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Trigonometric_functions.png differ diff --git a/zusammenfassung/analysis/Bilder/Umgebung.jpg b/zusammenfassung/analysis/Bilder/Umgebung.jpg new file mode 100644 index 0000000..e313e49 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/Umgebung.jpg differ diff --git a/zusammenfassung/analysis/Bilder/arcosh.png b/zusammenfassung/analysis/Bilder/arcosh.png new file mode 100644 index 0000000..0c5f4be Binary files /dev/null and b/zusammenfassung/analysis/Bilder/arcosh.png differ diff --git a/zusammenfassung/analysis/Bilder/arsinh.png b/zusammenfassung/analysis/Bilder/arsinh.png new file mode 100644 index 0000000..5cbb8c2 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/arsinh.png differ diff --git a/zusammenfassung/analysis/Bilder/artanh.png b/zusammenfassung/analysis/Bilder/artanh.png new file mode 100644 index 0000000..d4729c5 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/artanh.png differ diff --git a/zusammenfassung/analysis/Bilder/unit-circle.jpg b/zusammenfassung/analysis/Bilder/unit-circle.jpg new file mode 100644 index 0000000..99abc90 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/unit-circle.jpg differ diff --git a/zusammenfassung/analysis/Bilder/z_02.jpg b/zusammenfassung/analysis/Bilder/z_02.jpg new file mode 100644 index 0000000..428ab63 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/z_02.jpg differ diff --git a/zusammenfassung/analysis/Bilder/z_03.jpg b/zusammenfassung/analysis/Bilder/z_03.jpg new file mode 100644 index 0000000..1820853 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/z_03.jpg differ diff --git a/zusammenfassung/analysis/Bilder/z_04.JPG b/zusammenfassung/analysis/Bilder/z_04.JPG new file mode 100644 index 0000000..bd51cf4 Binary files /dev/null and b/zusammenfassung/analysis/Bilder/z_04.JPG differ diff --git a/zusammenfassung/analysis/sections/Ubersicht.tex b/zusammenfassung/analysis/sections/Ubersicht.tex new file mode 100644 index 0000000..18c7d22 --- /dev/null +++ b/zusammenfassung/analysis/sections/Ubersicht.tex @@ -0,0 +1,429 @@ + +\begin{multicols*}{3} + \subsection{Tabelle mit Ableitungen und Stammfunktionen} + + \begin{center} + \renewcommand{\arraystretch}{1.75} + \begin{tabular} {r c c c l} \toprule + $f'(x)$ & \hspace*{-10pt} + $\xleftrightharpoons[\int f(x) dx]{\frac{d}{dx}}$ + \hspace*{-10pt} & $f(x)$ & \hspace*{-10pt} + $\xleftrightharpoons[\int f(x) dx]{\frac{d}{dx}}$ + \hspace*{-10pt} & $F(x)$ \\ + \midrule + $n \cdot x^{n - 1}$ & \hspace*{-20pt} & $x^n$ & \hspace*{-20pt} & $\dfrac{1}{n + 1} x^{n + 1}$ \\ + $e^x$ & \hspace*{-20pt} & $e^x$ & \hspace*{-20pt} & $e^x$ \\ + $\dfrac{1}{x}$ & \hspace*{-20pt} & $\log|x|$ & \hspace*{-20pt} & $x (\log|x| - 1)$ \\ + \midrule + $\cos(x)$ & \hspace*{-20pt} & $\sin(x)$ & \hspace*{-20pt} & $-\cos(x)$ \\ + $-\sin(x)$ & \hspace*{-20pt} & $\cos(x)$ & \hspace*{-20pt} & $\sin(x)$ \\ + $\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$ & \hspace*{-20pt} & $\tan(x)$ & \hspace*{-20pt} & $-\log|\cos(x)|$ \\ + \midrule + $\dfrac{1}{\log(a) \cdot x}$ & \hspace*{-20pt} & $\log_a|x|$ & \hspace*{-20pt} & \\ + $\log(a) \cdot a^x$ & \hspace*{-20pt} & $a^x$ & \hspace*{-20pt} & $\dfrac{1}{\log(a)} a^x$ \\ + $x^x (\log(x)+1)$ & \hspace*{-20pt} & $x^x$ & \hspace*{-20pt} & \\ + \midrule + $\cosh(x)$ & \hspace*{-20pt} & $\sinh(x)$ & \hspace*{-20pt} & \\ + $\sinh(x)$ & \hspace*{-20pt} & $\cosh(x)$ & \hspace*{-20pt} & \\ + $\dfrac{1}{\cosh^2(x)}$ & \hspace*{-20pt} & $\tanh(x)$ & \hspace*{-20pt} & $\log(\cosh(x))$ \\ + \midrule + $\dfrac{1}{\sqrt{1 - x^2}}$ & \hspace*{-20pt} & $\arcsin(x)$ & \hspace*{-20pt} & \\ + $- \dfrac{1}{\sqrt{1 - x^2}}$ & \hspace*{-20pt} & $\arccos(x)$ & \hspace*{-20pt} & \\ + $\dfrac{1}{1 + x^2}$ & \hspace*{-20pt} & $\arctan(x)$ & \hspace*{-20pt} & \\ + \midrule + $\dfrac{1}{\sqrt[]{x^2 + 1}}$ & \hspace*{-20pt} & $\text{arsinh}(x)$ & \hspace*{-20pt} & \\ + $\dfrac{1}{\sqrt[]{x^2 - 1}}$ & \hspace*{-20pt} & $\text{arcosh}(x)$ & \hspace*{-20pt} & \\ + $\dfrac{1}{1 - x^2}$ & \hspace*{-20pt} & $\text{artanh}(x)$ & \hspace*{-20pt} & \\ + \midrule + $\text{sign}(x) = \begin{cases} + -1 & x < 0 \\ 1 & 0 < x \\ + \end{cases}$ \hspace*{-10pt} & \hspace*{-20pt} & $|x|$ & \hspace*{-20pt} & \\ + \bottomrule + \end{tabular} + \end{center} + + Bemerkung: Bei Ableitungen mit Logarithmen, sowie den inversen Trigo- und Hyperfunktionen ist der Definitionsbereich eingeschränkt! + + + \subsection{Stetige Funktionen} + + Folgende Elementarfunktionen sind stetig auf ihrem Definitionsbereich: + + \begin{center} + \begin{tabular}{l} \toprule + i) Polynome sind stetige Funktionen auf $\R$. \\ + ii) Rationale Funktionen $\frac{p}{q}$ sind stetig auf $\Omega = \{ z \in \C; q(z) \neq 0\}$. \\ + iii) Die Wurzelfunktion ist auf $\R_+$ stetig. \\ + iv) Die Exponentialfunktion ist auf $\R$ stetig. \\ + v) Die Logartihmusfunktion ist auf $]0, \infty[$ stetig. \\ + \bottomrule + \end{tabular} + \end{center} + \vfill\null + \columnbreak + + + \subsection{Partialbruchzerlegung} + + Ziel: Rationale Funktionen $\left(\frac{p(x)}{q(x)}\right)$ in Teilbrüche zerlegen. Vorgehen: \medskip + + i) Wenn der Zähler einen höheren Grad als den Nenner hat, muss man zuerst eine Polynomdivision durchführen, d.h. $\left(p(x):q(x) = \dots\right)$. \medskip + + ii) Das Nennerpolynom $q(x)$ in Nullstellenform bringen. + + \begin{center} + $q(x) = \prod\limits_{i = 1} (x - x_i)^{m_i}$ \qquad wobei $(x - x_i) = 0$ + \end{center} + + iii) a) Die Nullstelle hat Multiplizität 1 ($m_i = 1$): + + \begin{center} + $\dfrac{C}{(x - x_i)}$ + \end{center} + + b) Die Nullstelle hat Multiplizität grösser 1 ($1 < m_i$): + + \begin{center} + $\dfrac{C_1}{(x - x_i)} + \dfrac{C_2}{(x - x_i)^2} + \dots + \dfrac{C_{m_i}}{(x - x_i)^{m_i}}$ + \end{center} + + c) Die Nullstelle ist komplexwertig (Gewünschte Form: $ax^2 + b x + c$): + + \begin{center} + $\dfrac{Ax + B}{(a x^2 + b x + c)}$ + \end{center} + + iii) Alle Koeffizienten $C_i$ bestimmen durch einen Koeffizientenvergleich. + \vfill\null + \columnbreak + + + \section{Ergänzungen aus LinAlg} + + \subsection{Determinante} + + Sei $A \in M_{2 \times 2}(\R)$. Dann ist die Determinante: + + \begin{center} + \eqbox{$\det\begin{bmatrix} + a & b \\ c & d \\ + \end{bmatrix} := a d - b c$} + \end{center} + + + \subsubsection{Laplace Entwicklung} + + Sei die Matrix $A = \begin{bmatrix} + a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ + \end{bmatrix}$. Die Entwicklung nach Zeile 2 ist: + + \begin{center} + $\det(A) = -a_2 \cdot \det\begin{bmatrix} + b_1 & c_1 \\ b_3 & c_3 \\ + \end{bmatrix} + b_2 \cdot \det\begin{bmatrix} + a_1 & c_1 \\ a_3 & c_3 \\ + \end{bmatrix} - c_2 \cdot \det \begin{bmatrix} + a_1 & b_1 \\ a_3 & b_3 \\ + \end{bmatrix}$ + \end{center} + + Für die Vorzeichen gilt zu beachten: $\begin{bmatrix} + + & - & + & - \\ + - & + & - & + \\ + + & - & + & - \\ + - & + & - & + \\ + \end{bmatrix}$ + + + \subsection{Eigenwerte und Eigenvektoren} + + Die Eigenwerte einer Matrix $A$ berechnet man mit + + \begin{center} + \eqbox{$\det(A - \lambda I) = 0$} + \end{center} + + Der zum Eigenwert $\lambda_i$ dazugehörige Eigenvektor $\vect{s}_i$ berechnet man durch das Auflösen von folgendem homogenen LGS: + + \begin{center} + \eqbox{$(A - \lambda_i I) \cdot \vect{s}_i = \vect{0}$} + \end{center} + + + \subsubsection{Diagonalisierbar} + + Sei $A \in M_{n \times n}(\R)$ mit $n$ linear unabhängigen Eigenvektoren $\vect{s}_1$ und seien $\lambda_1, \dots, \lambda_n$ die Eigenwerte von $A$. Dann ist $A$ diagonalisierbar: + + \begin{center} + \eqbox{$A = S D S^{-1} = [\vect{s}_1 \dots \vect{s}_n] \begin{bmatrix} + \lambda_1 & & 0 \\ + & \ddots & \\ + 0 & & \lambda_n \\ + \end{bmatrix} [\vect{s}_1 \dots \vect{s}_n]^{-1}$} + \end{center} + + + \subsection{Matrixinverse berechen} + + Zuerst Gauss-Elimination, dann Rücksubstitution ($[A | I] \Rightarrow [I | A^{-1}]$) + + \subsubsection{Explizite Formeln} + + Für $A \in M_{2 \times 2}(\R)$ gilt: + + \begin{center} + \eqbox{$A^{-1} = \begin{bmatrix} + a & b \\ + c & d \\ + \end{bmatrix}^{-1} = \dfrac{1}{\det(A)} \cdot + \begin{bmatrix} + d & -b \\ + -c & a \\ + \end{bmatrix}$} + \end{center} + + Für $A \in M_{3 \times 3}(\R)$ gilt: + + \begin{center} + $A^{-1} = \begin{bmatrix} + a & b & c \\ + d & e & f \\ + g & h & i \\ + \end{bmatrix}^{-1} = \dfrac{1}{\det(A)} \cdot + \begin{bmatrix} + ei - fh & ch - bi & bf - ce \\ + fg - di & ai - cg & cd - af \\ + dh - eg & bg - ah & ae - bd \\ + \end{bmatrix}$ + \end{center} +\end{multicols*} + + +\begin{multicols*}{2} + \section{Spass mit Integralen} + + \subsection{Tangenssubstitution} + + Sei $t(x) = \tan(\frac{x}{2})$ mit $x \in ]-\pi, \pi[$. Dann gilt + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{l l} \toprule + $\cos(x) = \dfrac{1 - t^2(x)}{1 + t^2(x)}$ & $\sin(x) = \dfrac{2 t(x)}{1 + t^2(x)}$ \\ + $\cos^2(x) = \dfrac{1}{1 + t^2(x)}$ & $\sin^2(x) = \dfrac{t^2(x)}{1 + t^2(x)}$ \\ + \bottomrule + \end{tabular} + \end{center} + + Mit dieser Substitution kann man gewisse Trigonometrische Integrale einfacher lösen. + \subsection{Rückwärtssubstitution} + + Die Substitutionsregel lässt sich auch rückwärts durchführen. Sei $\varphi(x)$ \emph{injektiv}. Dann gilt: + + \begin{center} + \eqboxf{$\displaystyle \int\limits_{\alpha}^{\beta} f(t) dt = \int\limits_{\varphi^{-1}(\alpha)}^{\varphi^{-1}(\beta)} f\left( \varphi(x) \right) \cdot \varphi'(x) dx$} + \end{center} + + Bei geschickter Wahl der Funktion $\varphi(x)$ kann entgegen des ersten Anscheins der Integrand vereinfacht werden. + + \subsubsection{Tabelle} + %https://de.wikipedia.org/wiki/Integration_durch_Substitution#Anwendung + %https://en.wikipedia.org/wiki/Trigonometric_substitution + + Bem: Nach Anwendung der Regel ist die Trigo-Identiät ($cos^2(x) + sin^2(x) = 1$) notwendig! + + \begin{center} + \renewcommand{\arraystretch}{2} + \begin{tabular}{c l l l} \toprule + \textbf{Integral} & \multicolumn{2}{l}{\textbf{Rücksubstitution}} \\ + \midrule + $\int\limits_{\alpha}^{\beta} \sqrt{1 - t^2} dt$ & $\varphi(x) = \sin(x)$ & $\varphi^{-1}(t) = \arcsin(t)$ & $\varphi'(x) = \cos(x)$ \\ + \midrule + $\int\limits_{\alpha}^{\beta} \sqrt{a^2 - t^2} dt$ & $\varphi(x) = a \cdot \sin(x)$ & $\varphi^{-1}(t) = \arcsin\left(\dfrac{t}{a}\right)$ & $\varphi'(x) = a \cdot \cos(x)$ \\ + $\int\limits_{\alpha}^{\beta} \dfrac{1}{\sqrt{a^2 - t^2}} dt$ & $\varphi(x) = a \cdot \sin(x)$ & $\varphi^{-1}(t) = \arcsin\left(\dfrac{t}{a}\right)$ & $\varphi'(x) = a \cdot \cos(x)$ \\ + \midrule + $\int\limits_{\alpha}^{\beta} \sqrt{1 + t^2} dt$ & $\varphi(x) = \sinh(x)$ & $\varphi^{-1}(t) = \text{arsinh}(t)$ & $\varphi'(x) = \cosh(x)$ \\ + $\int\limits_{\alpha}^{\beta} \sqrt{t^2 - 1} dt$ & $\varphi(x) = \cosh(x)$ & $\varphi^{-1}(t) = \text{arcosh}(t)$ & $\varphi'(x) = \sinh(x)$ \\ + \bottomrule + \end{tabular} + \end{center} + + + \subsection{Integrale über eine Periode (Orthogonalitätsrelationen)} + + Sei $\omega = \dfrac{2\pi}{T}$ und $m,n \in \N$. Dann gelten folgende Relationen: + + \begin{center} + \begin{tabular}{l c l} \toprule + $\displaystyle\int\limits_0^T \sin(n \omega t) dt = 0$ & \hspace*{+20pt} & + $\displaystyle\int\limits_0^T \cos(n \omega t) dt = 0$ \\ + \midrule + $\displaystyle\int\limits_0^T \sin(n \omega t) \sin(m \omega t) dt = \begin{cases} + 0 & n \neq m \\ \frac{T}{2} & n = m \\ + \end{cases}$ & \hspace*{+20pt} & $\displaystyle\int\limits_0^T \cos(n \omega t) \cos(m \omega t) dt = \begin{cases} + 0 & n \neq m \\ \frac{T}{2} & n = m \\ + \end{cases}$ \\ + \midrule + $\displaystyle\int\limits_0^T \sin(n \omega t) \cos(m \omega t) dt = 0$ \\ + \toprule + \end{tabular} + \end{center} + \vfill\null + \columnbreak + + \subsection{Liste von Trigonometrischen Integralen} + + Man kann diese Integrale \emph{normalerweise} benutzen bei der Prüfung, solange man auf die Identität vermerkt. Man setzt dabei einfach die Integralgrenzen ein, wie man es intuitiv machen würde. + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{l c l} \toprule + $\displaystyle \int \sin^2(x) dx = \dfrac{x - \sin(x)\cos(x)}{2} + C$ & \hspace*{+10pt} & $\displaystyle \int\frac{1}{\sin{(x)}}dx =\ln{\vert\frac{\sin{(x)}}{\cos{(x)}+1}\vert} + C$ \\ + $\displaystyle \int \cos^2(x) dx = \dfrac{x + \sin(x)\cos(x)}{2} + C$ & \hspace*{+10pt} & $\displaystyle \int\frac{1}{\cos{(x)}}dx =\ln{\vert\frac{-\cos{(x)}}{\sin{(x)}-1}\vert} + C$ \\ + $\displaystyle \int \sin(x) \cos(x) dx = \dfrac{sin^2(x)}{2} + C$ & \hspace*{+10pt} & $\displaystyle \int \frac{1}{\tan(x)} dx =\ln\vert \sin(x) \vert + C$ \\ + $\displaystyle \int \sin^2(x)\cos(x)dx = \frac{1}{3}\sin^3(x) + C$ & \hspace*{+10pt} & $\displaystyle \int \frac{1}{\cos^2(x)}dx =\tan(x) + C$ \\ + $\displaystyle \int \sin(x)\cos^2(x)dx = -\frac{1}{3}\cos^3(x) + C$ & \hspace*{+10pt} & $\displaystyle \int \frac{1}{\sin^2{(x)}}dx =-\frac{1}{\tan{(x)}} + C$ \\ + $\displaystyle \int \sin^2(x)\cos^2(x)dx = \frac{1}{32}(4x-\sin(4x)) + C$ & \hspace*{+10pt} & $\displaystyle \int \arcsin(x)dx = x\cdot \arcsin(x)+\sqrt{1-x^2} + C$ \\ + $\displaystyle \int \arccos(x)dx =x\cdot \arccos(x)-\sqrt{1-x^2} + C$ & \hspace*{+10pt} & $\displaystyle \int \arctan(x)dx =x\cdot \arctan(x)-\frac{1}{2}\ln \vert x^2+1\vert + C$ \\ + \midrule + $\displaystyle \int_0^{2\pi}\cos^4(t)\text{dt} =\displaystyle \int_0^{2\pi}\sin^4(t)dt = \frac{3\pi}{4}$ & \hspace*{+10pt} & $\displaystyle \int_0^{2\pi}\cos^3(t)\text{dt} =\displaystyle \int_0^{2\pi}\sin^3(t)dt = 0$ \\ + $\displaystyle \int_0^{2\pi}\cos^2(t)\text{dt} =\displaystyle \int_0^{2\pi}\sin^2(t)dt = \pi$ & \hspace*{+10pt} & $\displaystyle \int_0^{2\pi}\sin(t)\cos^2(t)\text{dt} =\displaystyle \int_0^{2\pi}\cos(t)\sin^2(t)dt=0$ \\ + $\displaystyle \int_0^{2\pi}\sin(t)\cos(t)\text{dt} =0$ & \hspace*{+10pt} & \\ + \toprule + \end{tabular} + \end{center} + + \subsubsection{Tabelle von ausgewerteten Integralen} + + Mit der Begründung ''Symmetrie'' ist es normalerweise erlaubt die \emph{Nullintegrale} der Tabelle zu benutzen. \medskip + + Den Rest der Tabelle würde ich nur zur Überprüfung der Resultate an der Prüfung verwenden. Denke nicht, dass es Pünkte gibt, wenn man direkt das Resultat schreibt. + + \begin{center} + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{ r c c c c c c c }\toprule + \textbf{Funktion:} & \multicolumn{5}{l}{\textbf{Integralgrenzen:}} \\ + \midrule + & $\displaystyle\int_0^{\frac{\pi}{4}}$ & $\displaystyle\int_0^{\frac{\pi}{2}}$ & $\displaystyle\int_0^{\pi}$ & $\displaystyle\int_0^{2\pi}$ & $\displaystyle\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$ & $\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ & $\displaystyle\int_{-\pi}^{\pi}$ \\ + \midrule + $\sin(x)$ & $\frac{\sqrt{2}-1}{\sqrt{2}}$ & $1$ & $2$ & $0$ & $0$ & $0$ & $0$ \\ + + $\sin^2(x)$ & $\frac{\pi-2}{8}$ & $\frac{\pi}{4}$ & $\frac{\pi}{2}$ & $\pi$ & $\frac{\pi-2}{4}$ & $\frac{\pi}{2}$ & $\pi$ \\ + + $\sin^3(x)$ & $\frac{8-5\sqrt{2}}{12}$ & $\frac{2}{3}$ & $\frac{4}{3}$ & $0$ & $0$ & $0$ & $0$ \\ + + $\cos(x)$ & $\frac{1}{\sqrt{2}}$ & $1$ & $0$ & $0$ & $\sqrt{2}$ & $2$ & $0$ \\ + + $\cos^2(x)$ & $\frac{2+\pi}{8}$ & $\frac{\pi}{4}$ & $\frac{\pi}{2}$ & $\pi$ & $\frac{2+\pi}{4}$ & $\frac{\pi}{2}$ & $\pi$ \\ + + $\cos^3(x)$ & $\frac{5}{6\sqrt{2}}$ & $\frac{2}{3}$ & $0$ & $0$ & $\frac{5}{3\sqrt{2}}$ & $\frac{4}{3}$ & $0$ \\ + + $\sin \cdot \cos(x)$ & $\frac{1}{4}$ & $\frac{1}{2}$ & $0$ & $0$ & $0$ & $0$ & $0$ \\ + + $\sin^2 \cdot \cos(x)$ & $\frac{1}{6\sqrt{2}}$ & $\frac{1}{3}$ & $0$ & $0$ & $\frac{1}{3\sqrt{2}}$ & $\frac{2}{3}$ & $0$ \\ + + $\sin \cdot \cos^2(x)$ & $\frac{4-\sqrt{2}}{12}$ & $\frac{1}{3}$ & $\frac{2}{3}$ & $0$ & $0$ & $0$ & $0$ \\ + \bottomrule + \end{tabular} + \end{center} +\end{multicols*} + +\begin{multicols*}{3} + \section{Relevante Plots} + + \subsection{Trigonometrische Funktionen} + + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/Trigonometric_functions.png} + \end{center} + + \subsection{Einheitskreis} + + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/unit-circle.jpg} + \end{center} + \vfill\null + \columnbreak + + \subsection{Hyperbelfunktionen} + + \begin{center} + \includegraphics[width=1\linewidth]{Bilder/Sinh_cosh_tanh.png} + \end{center} + \vfill\null + \columnbreak + + \subsection{Areafunktionen (Umkehrfunktionen der Hyperbelfunktionen)} + + \begin{center} + \includegraphics[width=0.95\linewidth]{Bilder/arsinh.png} + \end{center} + + \begin{center} + \includegraphics[width=0.95\linewidth]{Bilder/arcosh.png} + \end{center} + + \begin{center} + \includegraphics[width=0.95\linewidth]{Bilder/artanh.png} + \end{center} +\end{multicols*} + +\begin{multicols*}{3} + \subsection{Kochrezepte} + + \subsubsection{Überprüfung auf Differenzierbarkeit} + + Meistens ist der Ursprung $(0,0)$ gefragt mit Funktionen, welche bis auf den Ursprung differenzierbar sind. Das allgemeine Vorgehen ist: \medskip + + i) Auf Stetigkeit überprüfen. \textbf{Polarkoordinantentrick}: + + \begin{center} + $r^2 = x^2+y^2$ mit $x = r \cdot \cos(\varphi)$ und $y = r \cdot \sin(\varphi)$ + \end{center} + \medskip + + Falls $\lim\limits_{r \to r_0}$ unabhängig von $\varphi$ existiert, dann ist $f$ stetig in $(x_0,y_0)$. \medskip + + \emph{Unstetigkeit zeigen}: Man untersucht die Grenzwerte verschiedener Folgen $(\frac{1}{n},\frac{1}{n})$ und $(0,\frac{1}{n})$ und zeigt, dass zwei Unterschiedliche Grenzwerte vorhanden sind. \medskip + + ii) Differenzierbarkeit überprüfen: Partielle Ableitungen bestimmen und Definition Differenzierbarkeit einsetzen (evtl. Polarkoordinantentrick für Grenzwert benutzen). \medskip + + \emph{Nicht differenzierbar} zeigen: Neben Unstetigkeit in $(x_0,y_0)$ oder Unstetigkeit von $\partial_x f, \partial_y f$ kann man auch zeigen, dass für $\vec{v} = h\cdot(v_1,v_2)$: + + \begin{center} + $\lim\limits_{h\to 0} \dfrac{f(h v_1,h v_2)-f(x_0)}{h}$ + \end{center} + + unterschiedliche Werte, z.B. links- und rechtsseitiger Grenzwert sind nicht gleich, besitzt. Oder man zeigt, dass die Richtungsableitungen nicht linear von $v$ abhängen. + + + \subsubsection{Überprüfen auf Stetigkeit} + + Neben den schon oben erwähnten Tricks, gibt es noch ein Paar weitere Hinweise: \medskip + + Beim $\delta,\epsilon$-Kriterium oder gleichmässige Konvergenz benötigt man oft die Dreiecksungleichung (oft mit einer verschwindenden $\pm$-Term Addition) oder die binomischen Formeln. + + + \subsubsection{Überprüfung Gleichmässige Konvergenz} + + \begin{enumerate} + \item Punktweisen Limes von $f_n$ auf $\Omega$ für fixes $x\in\Omega$ berechnen, d.h. + $$f(x) =\lim \limits_{n\to\infty} f_n(x)$$ + + Kann verschiedene Werte annehmen, je nach Punkt $x_0$! + + \item Prüfe $f_n$ auf gleichmässige Konvergenz. Vorgehen: + \begin{enumerate} + \item Berechne $\sup \limits_{x\in\Omega} |f_n(x)-f(x)|$. Oft ist es von Vorteil die \textbf{Ableitung} $\frac{d}{dx} |f_n(x)-f(x)|$ zu berechnen und \textbf{gleich Null zu setzen}, um das Maximum der Menge zu bestimmen. + \item Bilde den Limes für $n\to\infty$: $\lim\limits_{n\to\infty}\sup\limits_{x\in\Omega}|f_n(x)-f(x)|$, konvergiert dies für $n\to \infty$ so gilt gleichmässige konvergenz. + \end{enumerate} + Indirekte Methoden: + \begin{enumerate} + \item $ f$ unstetig $\Rightarrow$ keine gleichmässige Konvergenz + \item $f$ stetig, $f_n(x)\leq f_{n+1}(x),\quad\forall x \in\Omega $ und $\Omega$ kompakt $\Rightarrow$ gleichmässige Konvergenz + \end{enumerate} + \end{enumerate} + \vfill\null + \columnbreak + +\end{multicols*}